Exemplo n.º 1
0
def modisco2bed(modisco_dir, output_dir, trim_frac=0.08):
    from pybedtools import Interval
    from basepair.modisco.results import ModiscoResult
    add_file_logging(output_dir, logger, 'modisco2bed')
    ranges = load_ranges(modisco_dir)
    example_intervals = [
        Interval(row.chrom, row.start, row.end)
        for i, row in ranges.iterrows()
    ]

    r = ModiscoResult(os.path.join(modisco_dir, "modisco.h5"))
    r.export_seqlets_bed(output_dir,
                         example_intervals=example_intervals,
                         position='absolute',
                         trim_frac=trim_frac)
    r.close()
Exemplo n.º 2
0
def modisco_plot(
        modisco_dir,
        output_dir,
        # filter_npy=None,
        # ignore_dist_filter=False,
        figsize=(10, 10),
        impsf=None):
    """Plot the results of a modisco run

    Args:
      modisco_dir: modisco directory
      output_dir: Output directory for writing the results
      figsize: Output figure size
      impsf: [optional] modisco importance score file (ImpScoreFile)
    """
    plt.switch_backend('agg')
    add_file_logging(output_dir, logger, 'modisco-plot')
    from basepair.plot.vdom import write_heatmap_pngs
    from basepair.plot.profiles import plot_profiles
    from basepair.utils import flatten

    output_dir = Path(output_dir)
    output_dir.parent.mkdir(parents=True, exist_ok=True)

    # load modisco
    mr = ModiscoResult(f"{modisco_dir}/modisco.h5")

    if impsf is not None:
        d = impsf
    else:
        d = ImpScoreFile.from_modisco_dir(modisco_dir)
        logger.info("Loading the importance scores")
        d.cache()  # load all

    thr_one_hot = d.get_seq()
    # thr_hypothetical_contribs
    tracks = d.get_profiles()
    thr_hypothetical_contribs = dict()
    thr_contrib_scores = dict()
    # TODO - generalize this
    thr_hypothetical_contribs['weighted'] = d.get_hyp_contrib()
    thr_contrib_scores['weighted'] = d.get_contrib()

    tasks = d.get_tasks()

    # Count importance (if it exists)
    if d.contains_imp_score("counts/pre-act"):
        count_imp_score = "counts/pre-act"
        thr_hypothetical_contribs['count'] = d.get_hyp_contrib(
            imp_score=count_imp_score)
        thr_contrib_scores['count'] = d.get_contrib(imp_score=count_imp_score)
    elif d.contains_imp_score("count"):
        count_imp_score = "count"
        thr_hypothetical_contribs['count'] = d.get_hyp_contrib(
            imp_score=count_imp_score)
        thr_contrib_scores['count'] = d.get_contrib(imp_score=count_imp_score)
    else:
        # Don't do anything
        pass

    thr_hypothetical_contribs = OrderedDict(
        flatten(thr_hypothetical_contribs, separator='/'))
    thr_contrib_scores = OrderedDict(flatten(thr_contrib_scores,
                                             separator='/'))

    #     # load importance scores
    #     modisco_kwargs = read_json(f"{modisco_dir}/kwargs.json")
    #     d = HDF5Reader.load(modisco_kwargs['imp_scores'])
    #     if 'hyp_imp' not in d:
    #         # backcompatibility
    #         d['hyp_imp'] = d['grads']
    #     tasks = list(d['targets']['profile'])

    #     if isinstance(d['inputs'], dict):
    #         one_hot = d['inputs']['seq']
    #     else:
    #         one_hot = d['inputs']

    #     # load used strand distance filter

    #     included_samples = load_included_samples(modisco_dir)

    #     grad_type = "count,weighted"  # always plot both importance scores

    #     thr_hypothetical_contribs = OrderedDict([(f"{gt}/{task}", mean(d['hyp_imp'][task][gt])[included_samples])
    #                                              for task in tasks
    #                                              for gt in grad_type.split(",")])
    #     thr_one_hot = one_hot[included_samples]
    #     thr_contrib_scores = OrderedDict([(f"{gt}/{task}", thr_hypothetical_contribs[f"{gt}/{task}"] * thr_one_hot)
    #                                       for task in tasks
    #                                       for gt in grad_type.split(",")])
    #     tracks = OrderedDict([(task, d['targets']['profile'][task][included_samples]) for task in tasks])
    # -------------------------------------------------

    all_seqlets = mr.seqlets()
    all_patterns = mr.patterns()
    if len(all_patterns) == 0:
        print("No patterns found")
        return

    # 1. Plots with tracks and contrib scores
    print("Writing results for contribution scores")
    plot_profiles(all_seqlets,
                  thr_one_hot,
                  tracks=tracks,
                  importance_scores=thr_contrib_scores,
                  legend=False,
                  flip_neg=True,
                  rotate_y=0,
                  seq_height=.5,
                  patterns=all_patterns,
                  n_bootstrap=100,
                  fpath_template=str(output_dir /
                                     "{pattern}/agg_profile_contribcores"),
                  mkdir=True,
                  figsize=figsize)

    # 2. Plots only with hypothetical contrib scores
    print("Writing results for hypothetical contribution scores")
    plot_profiles(all_seqlets,
                  thr_one_hot,
                  tracks={},
                  importance_scores=thr_hypothetical_contribs,
                  legend=False,
                  flip_neg=True,
                  rotate_y=0,
                  seq_height=1,
                  patterns=all_patterns,
                  n_bootstrap=100,
                  fpath_template=str(output_dir /
                                     "{pattern}/agg_profile_hypcontribscores"),
                  figsize=figsize)

    print("Plotting heatmaps")
    for pattern in tqdm(all_patterns):
        write_heatmap_pngs(all_seqlets[pattern],
                           d,
                           tasks,
                           pattern,
                           output_dir=str(output_dir / pattern))

    mr.close()
Exemplo n.º 3
0
def modisco_report_all(modisco_dir,
                       trim_frac=0.08,
                       n_jobs=20,
                       scan_instances=False,
                       force=False):
    """Compute all the results for modisco. Runs:
    - modisco_plot
    - modisco_report
    - modisco_table
    - modisco_centroid_seqlet_matches
    - modisco_score2
    - modisco2bed
    - modisco_instances_to_bed

    Args:
      modisco_dir: directory path `output_dir` in `basepair.cli.modisco.modisco_run`
        contains: modisco.h5, strand_distances.h5, kwargs.json
      trim_frac: how much to trim the pattern
      n_jobs: number of parallel jobs to use
      force: if True, commands will be re-run regardless of whether whey have already
        been computed

    Note:
      All the sub-commands are only executed if they have not been ran before. Use --force override this.
      Whether the commands have been run before is deterimined by checking if the following file exists:
        `{modisco_dir}/.modisco_report_all/{command}.done`.
    """
    plt.switch_backend('agg')
    from basepair.utils import ConditionalRun

    modisco_dir = Path(modisco_dir)
    # figure out the importance scores used
    kwargs = read_json(modisco_dir / "kwargs.json")
    imp_scores = kwargs["imp_scores"]

    mr = ModiscoResult(f"{modisco_dir}/modisco.h5")
    mr.open()
    all_patterns = mr.patterns()
    mr.close()
    if len(all_patterns) == 0:
        print("No patterns found.")
        # Touch results.html for snakemake
        open(modisco_dir / 'results.html', 'a').close()
        open(modisco_dir / 'seqlets/scored_regions.bed', 'a').close()
        return

    # class determining whether to run the command or not (poor-man's snakemake)
    cr = ConditionalRun("modisco_report_all", None, modisco_dir, force=force)

    sync = []
    # --------------------------------------------
    if (not cr.set_cmd('modisco_plot').done()
            or not cr.set_cmd('modisco_cluster_patterns').done()
            or not cr.set_cmd('modisco_enrich_patterns').done()):
        # load ImpScoreFile and pass it to all the functions
        logger.info("Loading ImpScoreFile")
        impsf = ImpScoreFile.from_modisco_dir(modisco_dir)
        impsf.cache()
    else:
        impsf = None
    # --------------------------------------------
    # Basic reports
    if not cr.set_cmd('modisco_plot').done():
        modisco_plot(modisco_dir,
                     modisco_dir / 'plots',
                     figsize=(10, 10),
                     impsf=impsf)
        cr.write()
    sync.append("plots")

    if not cr.set_cmd('modisco_report').done():
        modisco_report(str(modisco_dir), str(modisco_dir))
        cr.write()
    sync.append("results.html")

    if not cr.set_cmd('modisco_table').done():
        modisco_table(modisco_dir, modisco_dir, report_url=None, impsf=impsf)
        cr.write()
    sync.append("footprints.pkl")
    sync.append("pattern_table.*")

    if not cr.set_cmd('modisco_cluster_patterns').done():
        modisco_cluster_patterns(modisco_dir, modisco_dir)
        cr.write()
    sync.append("patterns.pkl")
    sync.append("cluster-patterns.*")
    sync.append("motif_clustering")

    if not cr.set_cmd('modisco_enrich_patterns').done():
        modisco_enrich_patterns(modisco_dir / 'patterns.pkl',
                                modisco_dir,
                                modisco_dir / 'patterns.pkl',
                                impsf=impsf)
        cr.write()
    # sync.append("patterns.pkl")

    # TODO - run modisco align
    # - [ ] add the motif clustering step (as ipynb) and export the aligned tables
    #   - save the final table as a result to CSV (ready to be imported in excel)
    # --------------------------------------------
    # Finding new instances
    if scan_instances:
        if not cr.set_cmd('modisco_centroid_seqlet_matches').done():
            modisco_centroid_seqlet_matches(modisco_dir,
                                            imp_scores,
                                            modisco_dir,
                                            trim_frac=trim_frac,
                                            n_jobs=n_jobs,
                                            impsf=impsf)
            cr.write()

        # TODO - this would not work with the per-TF importance score file....
        if not cr.set_cmd('modisco_score2').done():
            modisco_score2(
                modisco_dir,
                modisco_dir / 'instances.parq',
                trim_frac=trim_frac,
                imp_scores=None,  # Use the default one
                importance=None,  # Use the default one
                n_jobs=n_jobs)
            cr.write()
    # TODO - update the pattern table -> compute the fraction of other motifs etc
    # --------------------------------------------
    # Export bed-files and bigwigs

    # Seqlets
    if not cr.set_cmd('modisco2bed').done():
        modisco2bed(str(modisco_dir),
                    str(modisco_dir / 'seqlets'),
                    trim_frac=trim_frac)
        cr.write()
    sync.append("seqlets")

    # Scanned instances
    # if not cr.set_cmd('modisco_instances_to_bed').done():
    #     modisco_instances_to_bed(str(modisco_dir / 'modisco.h5'),
    #                              instances_parq=str(modisco_dir / 'instances.parq'),
    #                              imp_score_h5=imp_scores,
    #                              output_dir=str(modisco_dir / 'instances_bed/'),
    #                              )
    #     cr.write()
    # sync.append("instances_bed")

    # print the rsync command to run in order to sync the output
    # directories to the webserver
    logger.info("Run the following command to sync files to the webserver")
    dirs = " ".join(sync)
    print(f"rsync -av --progress {dirs} <output_dir>/")