Exemplo n.º 1
0
 def plot(self):
     plot_scatter(None,
                  self.data_x,
                  self.data_y,
                  size=20,
                  pch='x',
                  colour="red",
                  title=self.name)
Exemplo n.º 2
0
 def display(self):
     plot_hist(list(self.knockouts_hist),
               title="Knockout size distribution",
               colour="blue")
     lines = [
         "%s, %s" % (x, y)
         for x, y in zip(self.solution.solutions['Size'],
                         self.solution.solutions['Fitness'])
     ]
     plot_scatter(
         lines, None, None, 20, "*", "blue",
         "Correlation between number of knockouts and fitness")
Exemplo n.º 3
0
 def handle(self) -> None:
     g2v = Garm2Vec()
     filepath = self.argument("filepath")
     full_filepath = os.path.abspath(os.path.expanduser(filepath))
     description = self.argument("description")
     vector = g2v.get_one([full_filepath, description])
     data = [f"{x},{y}" for x, y in enumerate(vector)]
     plot_scatter(
         f=data,
         xs=None,
         ys=None,
         title="Garm2Vec",
         pch="o",
         size=40,
         colour="default",
     )
Exemplo n.º 4
0
def scatter(x_data, y_data, title, n_points=None):
    """
    x_data: iterable of floats
        X data to plot
    y_data: iterable of floats
        Y data to plot
    title: string
        Title of the graph
    n_points: int
        How many of points (most recent) to plot. If None, plot all.
    """
    # bashplotlib.scatter.plot_scatter only accepts **files** (well, the pypi
    # release only accepts files. [PR43](https://github.com/glamp/bashplotlib/pull/43)
    # was merged but not released on pypi.
    # So we fake it. The code for `plot_scatter` will call `open(xs)`, so we just
    # write things to a temp file. /shrug.

    x_stream = tempfile.NamedTemporaryFile()
    y_stream = tempfile.NamedTemporaryFile()

    for i, ts in enumerate(x_data[-n_points:]):
        # timestamps are pd.datetime64 objects which store the number of
        # nanoseconds since the Unix epoch in the `value` attribute.
        ns = ts.value
        ms = ts.value / 1000
        x_stream.write((str(i) + "\n").encode("utf-8"))
    x_stream.seek(0)

    for yval in y_data[-n_points:]:
        y_stream.write((str(yval) + "\n").encode("utf-8"))
    y_stream.seek(0)

    plot_scatter(
        f=None,
        xs=x_stream.name,
        ys=y_stream.name,
        size=20,
        pch="x",
        colour="red",
        title=title,
    )

    # bashplotlib does not close files...
    x_stream.close()
    y_stream.close()
    def updater_routine(self, net_version, in_line_testing = False):
        
        for ii in tqdm(range(1+net_version, 1+net_version+self.n_epochs)):
            if ii < self.sequential_after_n_epochs:
                loss, val_loss = self.update_1step()
            else:
                loss, val_loss = self.update_sequence()
            
            new_loss = np.array([loss, val_loss])[np.newaxis,:]
            self.loss_history = np.append(self.loss_history, new_loss, axis = 0)
            
            if ii >= self.plot_last_n and not ii % self.visualize_every_n:
                
                print(f'iteration = {ii}')
                print(f'training loss = {loss}')
                print(f'validation loss = {val_loss}')
                loss_array = self.loss_history[-self.plot_last_n:,0]
                val_loss_array = self.loss_history[-self.plot_last_n:,1]
                np.savetxt("loss_hist.csv", np.concatenate((np.arange(1,loss_array.shape[0]+1)[:,np.newaxis],loss_array[:,np.newaxis]), axis = 1), delimiter=",")
                np.savetxt("val_loss_hist.csv", np.concatenate((np.arange(1,val_loss_array.shape[0]+1)[:,np.newaxis],val_loss_array[:,np.newaxis]), axis = 1), delimiter=",")
    
                try:
                    plot_scatter(f = "loss_hist.csv",xs = None, ys = None, size = 30, colour = 'white',pch = '*', title = 'training loss')
                    plot_scatter(f = "val_loss_hist.csv",xs = None, ys = None, size = 30, colour = 'yellow',pch = '*', title = 'validation loss')
                except Exception:
                    pass                    

                if not ii % self.save_every_n:
                    net_name = self.net_name +'_' +str(ii)
                    self.obs_net.save_net_params(net_name = net_name)
                    # inline testing for debugging only
                    if in_line_testing:
                        self.test_net(reset_every = self.training_sequence_max_length,  save_test_result = True, save_name = net_name)
                    

        loss_array = self.loss_history[1:,0]
        val_loss_array = self.loss_history[1:,1]
        
        tr_loss_filename = self.net_name + "_tr_loss.csv"
        val_loss_filename =self.net_name +  "_val_loss.csv"
        
        np.savetxt(tr_loss_filename, np.concatenate((np.arange(1,loss_array.shape[0]+1)[:,np.newaxis],loss_array[:,np.newaxis]), axis = 1), delimiter=",")
        np.savetxt(val_loss_filename, np.concatenate((np.arange(1,val_loss_array.shape[0]+1)[:,np.newaxis],val_loss_array[:,np.newaxis]), axis = 1), delimiter=",")
Exemplo n.º 6
0
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2019 red <red@red-Swift-SF113-31>
#
# Distributed under terms of the MIT license.
"""

"""
from bashplotlib.scatterplot import plot_scatter

x_coords = [-10, 20, 30]
y_coords = [-10, 20, 30]
width = 10
char = 'x'
color = 'default'
title = 'My Test Graph'

plot_scatter(None, x_coords, y_coords, width, char, color, title)
Exemplo n.º 7
0
 def display(self):
     plot_hist(list(self.knockouts_hist), title="Knockout size distribution", colour="blue")
     lines = ["%s, %s" % (x, y) for x, y in
              zip(self.solution.solutions['Size'], self.solution.solutions['Fitness'])]
     plot_scatter(lines, None, None, 20, "*", "blue", "Correlation between number of knockouts and fitness")
Exemplo n.º 8
0
 def plot_production_envelope_cli(envelope, objective, key, grid=None, width=None, height=None, title=None,
                                  points=None, points_colors=None, axis_font_size=None, color="blue"):
     scatterplot.plot_scatter(None, envelope[key], envelope["objective_upper_bound"], "*")
Exemplo n.º 9
0
method = 'ticker'

buy_value = 50650  #Set the buy value
interval = 5  #Minutes

xy_file = "xy.txt"
count = 0
file = open(xy_file, 'w')
file.close()
while (True):
    file = open(xy_file, 'a')
    try:
        page = requests.get("https://www.mercadobitcoin.net/api/" + search +
                            "/" + method + "/")
    except Exception as e:
        continue
    count += 1
    data_json = json.loads(str(BeautifulSoup(page.content, 'html.parser')))
    percent = (abs(float(data_json['ticker']['last']) - buy_value) /
               buy_value) * 100
    file.write(str(count) + "," + data_json['ticker']['last'] + "\n")
    file.close()
    if float(data_json['ticker']['last']) >= buy_value:
        symb = u"\u2191"
    else:
        symb = u"\u2193"
    plot_scatter(
        xy_file, "", "", 30, "*", "red",
        data_json['ticker']['last'] + " " + symb + " " + str(percent) + "%")
    time.sleep((interval - int(percent)) * 60)
    print chr(27) + "[2J"