Exemplo n.º 1
0
    def create_model(self):

        self.X = [T.imatrix(('X_%d' % i)) for i in range(self.num_of_corpus)]
        self.X_input = T.concatenate([
            (T.dot(basic.row_normalize(self.X[i] * self.idf), self.W) + self.b)
            for i in range(self.num_of_corpus)
        ],
                                     axis=0)
        self.generator = Generator(self.rng, self.theano_rng, self.batch_size,
                                   self.num_of_corpus)
        self.X_all_input = T.concatenate(
            [self.X_input, (T.dot(self.generator.output, self.W) + self.b)],
            axis=0)

        self.y_input = T.concatenate([
            i * T.ones_like(self.X[i][:, 0], dtype='int32')
            for i in range(self.num_of_corpus)
        ])
        self.g_label_input = T.concatenate([
            (i + self.num_of_corpus) * T.ones_like(
                self.generator.output[:self.generator.batch_size_var, 0],
                dtype='int32') for i in range(self.num_of_corpus)
        ])
        self.y_all_input = T.concatenate([self.y_input, self.g_label_input])

        self.discriminator = basic.MLP(self.rng,
                                       self.X_all_input,
                                       self.y_all_input,
                                       n_out=2 * self.num_of_corpus)
        self.classifier = basic.MLP(self.rng,
                                    self.X_input,
                                    self.y_input,
                                    n_out=self.num_of_corpus)
Exemplo n.º 2
0
    def create_model(self):

        self.X = [T.imatrix(('X_%d' %i)) for i in range(self.num_of_corpus)]
        self.X_input = T.concatenate([T.tanh(T.dot(basic.row_normalize(self.X[i]*self.idf), self.W[i])) for i in range(self.num_of_corpus)], axis=0) 
        self.X_c_input = T.concatenate([T.tanh(T.dot(basic.row_normalize(self.X[i]*self.idf), self.W_c)) for i in range(self.num_of_corpus)], axis=0) 
        self.X_all_input = T.concatenate([self.X_input, self.X_c_input], axis=0)

        self.y_input = T.concatenate([i*T.ones_like(self.X[i][:,0], dtype='int32') for i in range(self.num_of_corpus)])
        self.z_input = T.concatenate([T.ones_like(self.X_input[:,0], dtype='int32'), T.zeros_like(self.X_c_input[:,0], dtype='int32')])

        self.classifier = basic.MLP(self.rng, self.X_c_input, self.y_input, n_out=self.num_of_corpus)
        self.discriminator = basic.MLP(self.rng, self.X_all_input, self.z_input, n_hidden=10, n_out=2, L2_reg=0.01)
        self.generator = [self.W_c]
Exemplo n.º 3
0
    def create_model(self):

        self.X = [T.imatrix(('X_%d' %i)) for i in range(self.num_of_corpus)]
        self.X_c_input = T.concatenate([T.tanh(T.dot(basic.row_normalize(self.X[i]*self.idf), self.W_c) + self.b_c) for i in range(self.num_of_corpus)], axis=0) 
        self.y_input = T.concatenate([i*T.ones_like(self.X[i][:,0], dtype='int32') for i in range(self.num_of_corpus)])
        self.classifier = basic.MLP(self.rng, self.X_c_input, self.y_input, n_out=self.num_of_corpus)
        self.classifier_params = self.classifier.params + [self.W_c, self.b_c]