Exemplo n.º 1
0
    def apply(self, fgraph):
        did_something = True
        while did_something:
            nodelist = fgraph.toposort()
            did_something = False
            for node in nodelist:
                if node.op == T._max_and_argmax:
                    if len(node.outputs[1].clients)==0:
                        try:
                            axis=get_scalar_constant_value(node.inputs[1])
                        except NotScalarConstantError:
                            return False

                        new = CAReduce(scal.maximum,axis)(node.inputs[0])
                        try:
                            fgraph.replace_all_validate(
                                ((node.outputs[0],new),),
                                reason = self.__class__.__name__)
                            did_something = True
                            break
                        except InconsistencyError, e:
                            pass
Exemplo n.º 2
0
    def make_node(self, x, repeats):
        x = basic.as_tensor_variable(x)
        repeats = basic.as_tensor_variable(repeats)

        if repeats.dtype not in tensor.discrete_dtypes:
            raise TypeError("repeats.dtype must be an integer.")

        # Some dtypes are not supported by numpy's implementation of repeat.
        # Until another one is available, we should fail at graph construction
        # time, not wait for execution.
        int_bitwidth = theano.gof.cmodule.python_int_bitwidth()
        if int_bitwidth == 64:
            numpy_unsupported_dtypes = ('uint64',)
        if int_bitwidth == 32:
            numpy_unsupported_dtypes = ('uint32', 'int64', 'uint64')

        if repeats.dtype in numpy_unsupported_dtypes:
            raise TypeError(
                    ("dtypes %s are not supported by numpy.repeat "
                     "for the 'repeats' parameter, "
                     % numpy_unsupported_dtypes), repeats.dtype)

        if self.axis is None:
            broadcastable=[False]
        else:
            try:
                const_reps = basic.get_scalar_constant_value(repeats)
            except basic.NotScalarConstantError:
                const_reps = None
            if const_reps == 1:
                broadcastable = x.broadcastable
            else:
                broadcastable = list(x.broadcastable)
                broadcastable[self.axis] = False

        out_type = theano.tensor.TensorType(x.dtype, broadcastable)

        return theano.Apply(self, [x, repeats], [out_type()])