Exemplo n.º 1
0
    def _symbolgen(*symbols):
        """
        Generator of all symbols in the argument of the Derivative.

        Example:
        >> ._symbolgen(x, 3, y)
        (x, x, x, y)
        >> ._symbolgen(x, 10**6)
        (x, x, x, x, x, x, x, ...)

        The second example shows why we don't return a list, but a generator,
        so that the code that calls _symbolgen can return earlier for special
        cases, like x.diff(x, 10**6).
        """
        last_s = sympify(symbols[len(symbols) - 1])
        for i in xrange(len(symbols)):
            s = sympify(symbols[i])
            next_s = None
            if s != last_s:
                next_s = sympify(symbols[i + 1])

            if isinstance(s, Integer):
                continue
            elif isinstance(s, Symbol):
                # handle cases like (x, 3)
                if isinstance(next_s, Integer):
                    # yield (x, x, x)
                    for copy_s in repeat(s, int(next_s)):
                        yield copy_s
                else:
                    yield s
            else:
                yield s
Exemplo n.º 2
0
    def __new__(cls, expr, *symbols, **assumptions):
        expr = sympify(expr)
        if not symbols: return expr
        symbols = Derivative._symbolgen(*symbols)
        if not assumptions.get("evaluate", False) and not isinstance(
                expr, Derivative):
            obj = Basic.__new__(cls, expr, *symbols)
            return obj
        unevaluated_symbols = []
        for s in symbols:
            s = sympify(s)
            if not isinstance(s, Symbol):
                raise ValueError(
                    'Invalid literal: %s is not a valid variable' % s)
            if not expr.has(s):
                return S.Zero
            obj = expr._eval_derivative(s)
            if obj is None:
                unevaluated_symbols.append(s)
            elif obj is S.Zero:
                return S.Zero
            else:
                expr = obj

        if not unevaluated_symbols:
            return expr
        return Basic.__new__(cls, expr, *unevaluated_symbols)
Exemplo n.º 3
0
    def __new__(cls, expr, *symbols, **assumptions):
        expr = sympify(expr)
        if not symbols: return expr
        symbols = Derivative._symbolgen(*symbols)
        if expr.is_commutative:
            assumptions["commutative"] = True
        if assumptions.has_key("evaluate"):
            evaluate = assumptions["evaluate"]
            del assumptions["evaluate"]
        else:
            evaluate = False
        if not evaluate and not isinstance(expr, Derivative):
            obj = Basic.__new__(cls, expr, *symbols, **assumptions)
            return obj
        unevaluated_symbols = []
        for s in symbols:
            s = sympify(s)
            if not isinstance(s, Symbol):
                raise ValueError('Invalid literal: %s is not a valid variable' % s)
            if not expr.has(s):
                return S.Zero
            obj = expr._eval_derivative(s)
            if obj is None:
                unevaluated_symbols.append(s)
            elif obj is S.Zero:
                return S.Zero
            else:
                expr = obj

        if not unevaluated_symbols:
            return expr
        return Basic.__new__(cls, expr, *unevaluated_symbols, **assumptions)
Exemplo n.º 4
0
    def _symbolgen(*symbols):
        """
        Generator of all symbols in the argument of the Derivative.

        Example:
        >> ._symbolgen(x, 3, y)
        (x, x, x, y)
        >> ._symbolgen(x, 10**6)
        (x, x, x, x, x, x, x, ...)

        The second example shows why we don't return a list, but a generator,
        so that the code that calls _symbolgen can return earlier for special
        cases, like x.diff(x, 10**6).
        """
        last_s = sympify(symbols[len(symbols)-1])
        for i in xrange(len(symbols)):
            s = sympify(symbols[i])
            next_s = None
            if s != last_s:
                next_s = sympify(symbols[i+1])

            if isinstance(s, Integer):
                continue
            elif isinstance(s, Symbol):
                # handle cases like (x, 3)
                if isinstance(next_s, Integer):
                    # yield (x, x, x)
                    for copy_s in repeat(s,int(next_s)):
                        yield copy_s
                else:
                    yield s
            else:
                yield s
Exemplo n.º 5
0
 def matches(pattern, expr, repl_dict={}, evaluate=False):
     expr = sympify(expr)
     if pattern.is_commutative and expr.is_commutative:
         return AssocOp._matches_commutative(pattern, expr, repl_dict,
                                             evaluate)
     # todo for commutative parts, until then use the default matches method for non-commutative products
     return Basic.matches(pattern, expr, repl_dict, evaluate)
Exemplo n.º 6
0
    def taylor_term(cls, n, x, *previous_terms):
        """General method for the taylor term.

        This method is slow, because it differentiates n-times.  Subclasses can
        redefine it to make it faster by using the "previous_terms".
        """
        x = sympify(x)
        return cls(x).diff(x, n).subs(x, 0) * x**n / C.Factorial(n)
Exemplo n.º 7
0
    def taylor_term(cls, n, x, *previous_terms):
        """General method for the taylor term.

        This method is slow, because it differentiates n-times.  Subclasses can
        redefine it to make it faster by using the "previous_terms".
        """
        x = sympify(x)
        return cls(x).diff(x, n).subs(x, 0) * x**n / C.Factorial(n)
Exemplo n.º 8
0
def expand(e, **hints):
    """
    Expand an expression using hints.

    This is just a wrapper around Basic.expand(), see it's docstring of for a
    thourough docstring for this function. In isympy you can just type
    Basic.expand? and enter.
    """
    return sympify(e).expand(**hints)
Exemplo n.º 9
0
def expand(e, **hints):
    """
    Expand an expression using hints.

    This is just a wrapper around Basic.expand(), see it's docstring of for a
    thourough docstring for this function. In isympy you can just type
    Basic.expand? and enter.
    """
    return sympify(e).expand(**hints)
Exemplo n.º 10
0
    def __xnew__(cls, name, exclude, properties, **assumptions):
        obj = Symbol.__xnew__(cls, name, **assumptions)

        if exclude is None:
            obj.exclude = None
        else:
            obj.exclude = tuple([sympify(x) for x in exclude])
        if properties is None:
            obj.properties = None
        else:
            obj.properties = tuple(properties)
        return obj
Exemplo n.º 11
0
    def __xnew__(cls, name, exclude, properties, **assumptions):
        obj = Symbol.__xnew__(cls, name, **assumptions)

        if exclude is None:
            obj.exclude = None
        else:
            obj.exclude = tuple([sympify(x) for x in exclude])
        if properties is None:
            obj.properties = None
        else:
            obj.properties = tuple(properties)
        return obj
Exemplo n.º 12
0
 def matches(pattern, expr, repl_dict={}, evaluate=False):
     expr = sympify(expr)
     if pattern.is_commutative and expr.is_commutative:
         return AssocOp._matches_commutative(pattern, expr, repl_dict, evaluate)
     # todo for commutative parts, until then use the default matches method for non-commutative products
     return Basic.matches(pattern, expr, repl_dict, evaluate)