Exemplo n.º 1
0
    def encode(self, inp, **flags):
        """
        Takes symbolic input sequence, computes initial state
        :param inp: matrix of input tokens [batch, time]
        :return: a list of initial decoder state tensors
        """
        inp_lengths = infer_length(inp, self.inp_voc.eos_ix)
        inp_emb = self.emb_inp(inp)

        if self.bidirectional:
            outputs, states = tf.nn.bidirectional_dynamic_rnn(
                self.enc0,
                self.enc1,
                inp_emb,
                sequence_length=inp_lengths,
                dtype=inp_emb.dtype)
            return tf.concat(outputs, 2), tf.concat(states, 1)
        else:
            _, enc_last = tf.nn.dynamic_rnn(self.enc0,
                                            inp_emb,
                                            sequence_length=inp_lengths,
                                            dtype=inp_emb.dtype)

            #             dec_start = self.dec_start(enc_last)
            return _, enc_last
Exemplo n.º 2
0
    def encode(self, inp, **flags):
        """
        Takes symbolic input sequence, computes initial state and embefings for attention
        :param inp: matrix of input tokens [batch, time]
        :return: a list of initial decoder state tensors
        """
        inp_lengths = infer_length(inp, self.inp_voc.eos_ix)
        inp_emb = self.emb_inp(inp)

        outputs, final_state = tf.nn.bidirectional_dynamic_rnn(
            self.encoder_forward_GRU, self.encoder_backward_GRU,
            inp_emb, sequence_length=inp_lengths, dtype=inp_emb.dtype
        )

        return tf.concat(outputs, 2), tf.concat(final_state, 1)
Exemplo n.º 3
0
    def encode(self, inp, **flags):
        """
        Takes symbolic input sequence, computes initial state
        :param inp: matrix of input tokens [batch, time]
        :return: a list of initial decoder state tensors
        """
        inp_lengths = infer_length(inp, self.inp_voc.eos_ix)
        inp_emb = self.emb_inp(inp)

        _, enc_last = tf.nn.dynamic_rnn(
                          self.enc0, inp_emb,
                          sequence_length=inp_lengths,
                          dtype = inp_emb.dtype)
        
        dec_start = self.dec_start(enc_last[1])
        return [dec_start]