Exemplo n.º 1
0
def compute_correlation(x, y):
	stdev_x = statslib.compute_standard_deviation(len(x), x)
	stdev_y = statslib.compute_standard_deviation(len(y), y)

	if stdev_x > 0 and stdev_y > 0:
		covariance = compute_covariance(x, y)
		return covariance / stdev_x / stdev_y
	else:
		return 0
def compute_dot_product(x, y):
    return sum(x_i * y_i for x_i, y_i in zip(x, y))


def compute_pearson_coefficient(x, x_mu, x_sigma, y, y_mu, y_sigma):
    dot_product = compute_dot_product(x, y)
    pearson_coefficient = (dot_product - n * x_mu * y_mu) / ((n - 1) * (x_sigma * y_sigma))
    return pearson_coefficient


if __name__ == "__main__":

    n, maths, physics, chemistry = read_input()

    maths_mean = statslib.compute_mean(n, maths)
    maths_sd = statslib.compute_standard_deviation(n, maths)

    physics_mean = statslib.compute_mean(n, physics)
    physics_sd = statslib.compute_standard_deviation(n, physics)

    chemistry_mean = statslib.compute_mean(n, chemistry)
    chemistry_sd = statslib.compute_standard_deviation(n, chemistry)

    pearson_coefficient_maths_physics = compute_pearson_coefficient(
        maths, maths_mean, maths_sd, physics, physics_mean, physics_sd
    )
    print "%.2f" % pearson_coefficient_maths_physics

    pearson_coefficient_physics_chem = compute_pearson_coefficient(
        physics, physics_mean, physics_sd, chemistry, chemistry_mean, chemistry_sd
    )