Exemplo n.º 1
0
import batchOpenMPI

#defining function
def f_org(x) :
    return x ** 2
def g_org(x) :
    return x + 1
def h_org(x) :
    return x - 0.2

# creating batch functions
f = batchOpenMPI.batchFunction(f_org)
g = batchOpenMPI.batchFunction(g_org)
h = batchOpenMPI.batchFunction(h_org)

batchOpenMPI.begin_MPI_loop() 
# building processing que
bi = g.addtoBatch(3,2)
print(f.addtoBatch(bi))
print(h.addtoBatch(bi))
batchOpenMPI.processBatch() #get the workers to calculate all the inputs

# now actuall code
print (
"""
f(x) = x ** 2
g(x) = x + 1
h(x) = x - 0.2

f(g(3)) = %f
h(g(3)) = %f
Exemplo n.º 2
0
"""
 example with 'calls_expected' in addtoBatch used
"""

import batchOpenMPI
def f_mult(x) : 
    return x*2.0
f = batchOpenMPI.batchFunction(f_mult) #creating function wrapper

batchOpenMPI.begin_MPI_loop() # both the workers and the master process run the same code up until here
f.addtoBatch(4,calls_expected=4)
batchOpenMPI.processBatch() #get the workers to calculate all the inputs
res = [f(4),f(4),f(4)] 
print(res)

#another test
f.addtoBatch(1)
batchOpenMPI.processBatch() #get the workers to calculate all the inputs
res = f(1), f(1)

batchOpenMPI.end_MPI_loop(print_stats=True) #releases workers

print("*** jobs executed by workers should be 2 ,(5 calls made),jobs uncollected should = 1, jobs_master=1")
Exemplo n.º 3
0
#! /usr/bin/env python
import numpy, tuning_setups, batchOpenMPI, plotlib
from optTune import tMOPSO
from matplotlib import pyplot

batchOpenMPI.begin_MPI_loop()
#adjust which CEC problem to tune under, etcetera in tuning_setups.py
runAlg = tuning_setups.batchOpenMPI_wrapper(tuning_setups.PSO_batch,
                                            tuning_setups.prob_ID)

tuningOpt = tMOPSO(
    optAlg=runAlg,
    CPV_lb=tuning_setups.PSO_CPV_lb,
    CPV_ub=tuning_setups.PSO_CPV_ub,
    CPV_validity_checks=tuning_setups.PSO_CPV_validity_checks,
    OFE_budgets=tuning_setups.PSO_OFE_budgets,
    sampleSizes=tuning_setups.PSO_sampleSizes,  #resampling size of 25
    resampling_interruption_confidence=tuning_setups.PSO_alpha,
    gammaBudget=tuning_setups.PSO_gammaBudget,  #tuning budget
    addtoBatch=runAlg.addtoBatch,
    processBatch=batchOpenMPI.processBatch)

batchOpenMPI.end_MPI_loop(print_stats=True)  #release workers, and print stats

print(tuningOpt)

OFE_budgets = [d.fv[0] for d in tuningOpt.PFA.designs]
Fmin_values = [d.fv[1] for d in tuningOpt.PFA.designs]

log_OFE_budgets = [d.xv[0] for d in tuningOpt.PFA.designs]
N_values = [int(d.xv[1]) for d in tuningOpt.PFA.designs]
Exemplo n.º 4
0
"""
 example with multiRef
"""

import batchOpenMPI
def f_mult(x) : 
    return x*2.0
f = batchOpenMPI.batchFunction(f_mult,multiRef=True) #creating function wrapper

batchOpenMPI.begin_MPI_loop(print_launch_messages=False) # both the workers and the master process run the same code up until here
no = range(10) + range(10) # creates [0,1,2,3,4,5,6,7,8,9] x 2
for i in no :# adding all f_inv input and queing them for parallel processing
    f.addtoBatch(i)
batchOpenMPI.processBatch() #get the workers to calculate all the inputs
res = [] #used for storing results
for i in no :
    res.append(f(i))
print(res)

batchOpenMPI.end_MPI_loop(print_stats=True) #releases workers

print("*** jobs executed by workers should be %i, out of the total of %i" % (len(no)/2,len(no)) )
Exemplo n.º 5
0
    "simulates an external program that writes its output to file"
    f = file('results.txt','w')
    f.write(str(x ** 2))
    f.close() 

def fun_org(x) :
    ex_prog(x)
    f = file('results.txt','r')
    res = float(f.readline().strip())
    f.close()
    return res

fun = batchOpenMPI.batchFunction(fun_org) #creating function wrapper
batchOpenMPI.WorkingDir_base = 'workspace' #giving each worker a directory to workin.

batchOpenMPI.begin_MPI_loop() #split workers and master
no = range(10)  #creating inputs

print("""f(x) = x ** 2

the results will be written to file, and as the result file name will be the same. 
each process will be given its own workspace using batchOpenMPI.WorkingDir_base""")

print("\ninputs :" + str(no))


for i in no :# adding all f_inv input and queing them for parallel processing
    fun.addtoBatch(i)
batchOpenMPI.processBatch() #get the workers to calculate all the inputs
res = [] #used for storing results
for i in no :
Exemplo n.º 6
0
import batchOpenMPI

batchOpenMPI.begin_MPI_loop(print_launch_messages=False)

print('First call should fail:')
batchOpenMPI.showStats()
print('Second call after end_MPI_loop should work')
batchOpenMPI.end_MPI_loop(print_stats=True)