Exemplo n.º 1
0
 def __call__(self, **data_dict):
     for b in range(len(data_dict[self.data_key])):
         if np.random.uniform() < self.p_per_sample:
             data_dict[self.data_key][b] = augment_rician_noise(
                 data_dict[self.data_key][b],
                 noise_variance=self.noise_variance)
     return data_dict
Exemplo n.º 2
0
def rician_noise_generator(generator, noise_variance=(0, 0.1)):
    '''
    Adds rician noise with the given variance.
    The Noise of MRI data tends to have a rician distribution: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254141/
    '''
    for data_dict in generator:
        assert "data" in list(
            data_dict.keys()), "your data generator needs to return a python dictionary with at least a 'data' key value pair"

        data_dict["data"] = augment_rician_noise(data_dict['data'], noise_variance=noise_variance)
        yield data_dict
Exemplo n.º 3
0
def rician_noise_generator(generator, noise_variance=(0, 0.1)):
    '''
    Adds rician noise with the given variance.
    The Noise of MRI data tends to have a rician distribution: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254141/
    '''
    for data_dict in generator:
        assert "data" in list(
            data_dict.keys()
        ), "your data generator needs to return a python dictionary with at least a 'data' key value pair"

        data_dict["data"] = augment_rician_noise(data_dict['data'],
                                                 noise_variance=noise_variance)
        yield data_dict
Exemplo n.º 4
0
 def __call__(self, **data_dict):
     data_dict["data"] = augment_rician_noise(
         data_dict['data'], noise_variance=self.noise_variance)
     return data_dict
Exemplo n.º 5
0
 def __call__(self, **data_dict):
     data_dict[self.data_key] = augment_rician_noise(
         data_dict[self.data_key], noise_variance=self.noise_variance)
     return data_dict