Exemplo n.º 1
0
def navigateToWaypoint(X, Y):
    global estimate_x
    global estimate_y
    global estimate_theta
    global p_x
    global p_y
    global p_theta
    global weights
    global mu
    global sigma_e
    global sigma_f
    global sigma_g

    print "Silly test " + str(estimate_x) + " " + str(estimate_y) + " " + str(
        estimate_theta)
    x_diff = X - estimate_x
    y_diff = Y - estimate_y
    dist = (x_diff**2 + y_diff**2)**0.5
    angleDest = math.atan2(y_diff,
                           x_diff)  # returns an angle between - pi  and pi

    angleRotate = angleDest - estimate_theta

    L01.left_90(angleRotate / 1.5708)
    time.sleep(2.5)
    #particles_rot = []
    for k in range(100):
        error_g = random.gauss(mu, sigma_g)
        p_theta[k] += angleRotate + error_g
    #   particles_rot.append((5*p_x[k], 5*p_y[k], p_theta[k]))
    #print "drawParticles:" + str(particles_rot)  # should print out the drawParticles

    L01.forward(dist)
    time.sleep(dist * 0.2)
    #particles = []
    for k in range(
            100
    ):  #this code is only relevant for correction once a move has been logged
        error_e = random.gauss(mu, sigma_e)
        error_f = random.gauss(mu, sigma_f)
        p_x[k] += (dist + error_e) * math.cos(angleDest)
        p_y[k] += (dist + error_e) * math.sin(angleDest)
        p_theta[k] += error_f
    #    particles.append((5*p_x[k], 5*p_y[k], p_theta[k]))
    #print "drawParticles:" + str(particles)  # should print out the drawParticles

    # now to update current guess of position
    estimate_x = 0.0
    estimate_y = 0.0
    estimate_theta = 0.0
    for i in range(100):
        estimate_x += p_x[i] * weights[i]
        estimate_y += p_y[i] * weights[i]
        estimate_theta += p_theta[i] * weights[i]
Exemplo n.º 2
0
def navigateToWaypoint(X, Y):  # X,Y are cords of dest
    global estimate_x
    global estimate_y
    global estimate_theta
    global p_x
    global p_y
    global p_theta
    global mu
    global sigma_e
    global sigma_f
    global sigma_g

    #print "Silly test " + str(estimate_x) +" "+ str(estimate_y) +" "+str(estimate_theta)
    x_diff = X - estimate_x
    y_diff = Y - estimate_y
    dist = (x_diff**2 + y_diff**2)**0.5
    angleDest = math.atan2(y_diff,
                           x_diff)  # returns an angle between - pi  and pi
    angleRotate = angleDest - estimate_theta
    L01.left_90(angleRotate / 1.5708)
    time.sleep(2.5)

    e = sigma_e * math.sqrt(dist / 10)
    f = sigma_f * math.sqrt(dist / 10)
    g = sigma_g * math.sqrt(dist / 10)

    #update all the particles angle
    for k in range(100):
        error_g = random.gauss(mu, g)
        p_theta[k] += angleRotate + error_g

    L01.forward(dist)
    time.sleep(dist * 0.08)
    for k in range(
            100
    ):  #this code is only relevant for correction once a move has been logged
        error_e = random.gauss(mu, e)
        error_f = random.gauss(mu, f)
        p_x[k] += (dist + error_e) * math.cos(angleDest)
        p_y[k] += (dist + error_e) * math.sin(angleDest)
        p_theta[k] += error_f
Exemplo n.º 3
0
def navigateToWaypoint(X, Y):  # X,Y are cords of dest
	global estimate_x
	global estimate_y
	global estimate_theta
	global p_x
	global p_y
	global p_theta
	global mu
	global sigma_e
	global mu_f
	global sigma_f
	global sigma_g
	global mean_g

	while(not there_yet(X,Y)):
		# calc dist and angle to move still
		x_diff = X-estimate_x
		y_diff = Y-estimate_y
		dist = (x_diff**2 + y_diff**2)**0.5
		# 20cm bursts
		dist = min(dist, 20)
		angleDest = math.atan2(y_diff,x_diff) # returns an angle between - pi  and pi
		angleRotate = angleDest - estimate_theta

		# rotate robot
		if angleRotate <= -math.pi:
			ar = angleRotate + 2*math.pi
			L01.left_90(ar/(math.pi/2))
		elif angleRotate <= 0:
			ar = -angleRotate
			L01.right_90(ar/(math.pi/2))
		elif angleRotate <= math.pi:
			L01.left_90(angleRotate/(math.pi/2))
		else:
			# angleRoate <= 2*math.pi
			ar = 2*math.pi - angleRotate
			L01.right_90(ar/(math.pi/2))
		time.sleep(2)

		# standard deviations for particle simualtion - scaled for distance
		s_e = sigma_e * math.sqrt(dist/10)
		s_f = sigma_f * math.sqrt(dist/10)

		# update all the particle angles
		for k in range (100):
			# scale mean for actual rotate
			mean_g = (angleRotate / (math.pi/2)) * mean_g
			error_g = random.gauss(mean_g,sigma_g)
			p_theta[k] += angleRotate + error_g

		# move robot forward
		L01.forward(dist)
		time.sleep(dist*0.08)

		# update all the particle positions
		for k in range(100):
			error_e = random.gauss(mu,s_e)
			error_f = random.gauss(mu_f,s_f)
			p_x[k] += (dist + error_e) * math.cos(angleDest+error_f)
			p_y[k] += (dist + error_e) * math.sin(angleDest+error_f)
			p_theta[k] += error_f

		# read sonar - start of MCL
		reading = read_sonar()

		for k in range(100):
			particles.data.append((p_x[k], p_y[k], p_theta[k], weights[k]))
		particles.draw()

		update_particles(reading)
		normalise()
		resample()
		time.sleep(1)

		# re-estimate position based on particles
		updatePos()

		# print particles to server
		# remove particles form presample
		particles.data = particles.data[:len(particles.data)-100]
		for k in range(100):
			particles.data.append((p_x[k], p_y[k], p_theta[k], weights[k]))
		particles.draw()