Exemplo n.º 1
0
        #fig = pl.figure(figsize=(10,5))
        #pl.plot(flarelc.cts, flarelc.clc)
        #fig.savefig('flaretimeseries.png')
        #fig.clf()
        #pl.close(fig)

        Or = bf.OddsRatioDetector(
            flarelc,
            bglen=bglen,
            bgorder=bgorder,
            flareparams={
                'taug': (0, 1.5 * 60 * 60, 10),
                'taue': (0.5 * 60 * 60, 3. * 60 * 60, 10)
            },
            noisepoly=True,
            noiseimpulse=True,
            noiseimpulseparams={'t0': (0, (bglen - 1.) * flarelc.dt(), bglen)},
            noiseexpdecay=True,
            noiseexpdecayparams={'taue': (0.0, 0.25 * 60 * 60, 3)},
            noiseexpdecaywithreverse=True,
            ignoreedges=True,
            noiseestmethod='tailveto',
            tvsigma=1.0)

        lnO, tst = Or.oddsratio()

        # find points above threshold
        lnOa = np.array(lnO)
        tstruncated = tst  # times with edges removed
Exemplo n.º 2
0
            outdict["Rejected stars"].append(kids[i]["kepid"])
            continue

        # check if star had already been analysed
        if starlist != None:
            if kids[i]["kepid"] in starlist:
                print "KIC %d has already been analysed" % kids[i]["kepid"]
                continue

        nf = nf + 1
        outdict["No. stars analysed"] = nf  # update number of stars
        outdict["Star list"].append(kids[i]["kepid"])  # append to star list

        # calculate odds ratio
        odds = bf.OddsRatioDetector(flarelc,
                                    noiseestmethod='tailveto',
                                    tvsigma=1.0)
        odds.set_noise_impulse(noiseimpulseparams={
            't0': (0, (odds.bglen - 1.) * flarelc.dt(), odds.bglen)
        })

        lnO, ts = odds.oddsratio()

        # find flares
        flarelist, Nflares, maxlist = odds.thresholder(lnO,
                                                       threshold,
                                                       expand=expand)

        if i == 0:
            # set some analysis data
            outdict[
Exemplo n.º 3
0
        sys.exit(0)

    print "Noise estimate with '%s' method = %f" % (noiseest, sig)

    if not opts.lconly:
        # get the odds ratio
        Or = bf.OddsRatioDetector(
            flarelc,
            bglen=bglen,
            bgorder=bgorder,
            nsinusoids=nsinusoids,
            noiseestmethod=noiseest,
            psestfrac=opts.psest,
            tvsigma=opts.tvsigma,
            flareparams={
                'taugauss': (0, 1.5 * 60 * 60, 10),
                'tauexp': (0.5 * 60 * 60, 3. * 60 * 60, 10)
            },
            noisepoly=True,
            noiseimpulse=True,
            noiseimpulseparams={'t0': (0, (bglen - 1.) * flarelc.dt(), bglen)},
            noiseexpdecay=True,
            noiseexpdecayparams={'tauexp': (0.0, 0.25 * 60 * 60, 3)},
            noiseexpdecaywithreverse=True,
            ignoreedges=True)

        lnO, tst = Or.oddsratio()

    # set matplotlib defaults
    mplparams = { \
      'text.usetex': True, # use LaTeX for all text