Exemplo n.º 1
0
        def compute_phi_from_parents(u_parents):

            # Compute weighted average of the parameters

            # Cluster parameters
            Phi = distribution.compute_phi_from_parents(u_parents[1:])
            # Contributions/weights/probabilities
            P = u_parents[0][0]

            phi = list()

            for ind in range(len(Phi)):
                # Compute element-wise product and then sum over K clusters.
                # Note that the dimensions aren't perfectly aligned because
                # the cluster dimension (K) may be arbitrary for phi, and phi
                # also has dimensions (Dd,..,D0) of the parameters.
                # Shape(phi)    = [Nn,..,K,..,N0,Dd,..,D0]
                # Shape(p)      = [Nn,..,N0,K]
                # Shape(result) = [Nn,..,N0,Dd,..,D0]
                # General broadcasting rules apply for Nn,..,N0, that is,
                # preceding dimensions may be missing or dimension may be
                # equal to one. Probably, shape(phi) has lots of missing
                # dimensions and/or dimensions that are one.

                if cluster_plate < 0:
                    cluster_axis = cluster_plate - distribution.ndims[ind]
                #else:
                #    cluster_axis = cluster_plate

                # Move cluster axis to the last:
                # Shape(phi)    = [Nn,..,N0,Dd,..,D0,K]
                phi.append(utils.moveaxis(Phi[ind], cluster_axis, -1))

                # Add axes to p:
                # Shape(p)      = [Nn,..,N0,K,1,..,1]
                p = utils.add_trailing_axes(P, distribution.ndims[ind])
                # Move cluster axis to the last:
                # Shape(p)      = [Nn,..,N0,1,..,1,K]
                p = utils.moveaxis(p, -(distribution.ndims[ind] + 1), -1)
                #print('Mixture.compute_phi, p:', np.sum(p, axis=-1))
                #print('mixture.compute_phi shapes:')
                #print(np.shape(p))
                #print(np.shape(phi[ind]))

                # Now the shapes broadcast perfectly and we can sum
                # p*phi over the last axis:
                # Shape(result) = [Nn,..,N0,Dd,..,D0]
                phi[ind] = utils.sum_product(p, phi[ind], axes_to_sum=-1)

            return phi
Exemplo n.º 2
0
        def compute_phi_from_parents(u_parents):

            # Compute weighted average of the parameters

            # Cluster parameters
            Phi = distribution.compute_phi_from_parents(u_parents[1:])
            # Contributions/weights/probabilities
            P = u_parents[0][0]

            phi = list()
            
            for ind in range(len(Phi)):
                # Compute element-wise product and then sum over K clusters.
                # Note that the dimensions aren't perfectly aligned because
                # the cluster dimension (K) may be arbitrary for phi, and phi
                # also has dimensions (Dd,..,D0) of the parameters.
                # Shape(phi)    = [Nn,..,K,..,N0,Dd,..,D0]
                # Shape(p)      = [Nn,..,N0,K]
                # Shape(result) = [Nn,..,N0,Dd,..,D0]
                # General broadcasting rules apply for Nn,..,N0, that is,
                # preceding dimensions may be missing or dimension may be
                # equal to one. Probably, shape(phi) has lots of missing
                # dimensions and/or dimensions that are one.

                if cluster_plate < 0:
                    cluster_axis = cluster_plate - distribution.ndims[ind]
                #else:
                #    cluster_axis = cluster_plate

                # Move cluster axis to the last:
                # Shape(phi)    = [Nn,..,N0,Dd,..,D0,K]
                phi.append(utils.moveaxis(Phi[ind], cluster_axis, -1))

                # Add axes to p:
                # Shape(p)      = [Nn,..,N0,K,1,..,1]
                p = utils.add_trailing_axes(P, distribution.ndims[ind])
                # Move cluster axis to the last:
                # Shape(p)      = [Nn,..,N0,1,..,1,K]
                p = utils.moveaxis(p, -(distribution.ndims[ind]+1), -1)
                #print('Mixture.compute_phi, p:', np.sum(p, axis=-1))
                #print('mixture.compute_phi shapes:')
                #print(np.shape(p))
                #print(np.shape(phi[ind]))
                
                # Now the shapes broadcast perfectly and we can sum
                # p*phi over the last axis:
                # Shape(result) = [Nn,..,N0,Dd,..,D0]
                phi[ind] = utils.sum_product(p, phi[ind], axes_to_sum=-1)
                
            return phi
Exemplo n.º 3
0
        def compute_g_from_parents(u_parents):

            # Compute weighted average of g over the clusters.

            # Shape(g)      = [Nn,..,K,..,N0]
            # Shape(p)      = [Nn,..,N0,K]
            # Shape(result) = [Nn,..,N0]

            # Compute g for clusters:
            # Shape(g)      = [Nn,..,K,..,N0]
            g = distribution.compute_g_from_parents(u_parents[1:])

            # Move cluster axis to last:
            # Shape(g)      = [Nn,..,N0,K]
            g = utils.moveaxis(g, cluster_plate, -1)

            # Cluster assignments/contributions/probabilities/weights:
            # Shape(p)      = [Nn,..,N0,K]
            p = u_parents[0][0]

            # Weighted average of g over the clusters. As p and g are
            # properly aligned, you can just sum p*g over the last
            # axis and utilize broadcasting:
            # Shape(result) = [Nn,..,N0]
            #print('mixture.compute_g_from_parents p and g:', np.shape(p), np.shape(g))
            g = utils.sum_product(p, g, axes_to_sum=-1)

            #print('mixture.compute_g_from_parents g:', np.sum(g), np.shape(g))

            return g
Exemplo n.º 4
0
        def compute_g_from_parents(u_parents):

            # Compute weighted average of g over the clusters.

            # Shape(g)      = [Nn,..,K,..,N0]
            # Shape(p)      = [Nn,..,N0,K]
            # Shape(result) = [Nn,..,N0]

            # Compute g for clusters:
            # Shape(g)      = [Nn,..,K,..,N0]
            g = distribution.compute_g_from_parents(u_parents[1:])
            
            # Move cluster axis to last:
            # Shape(g)      = [Nn,..,N0,K]
            g = utils.moveaxis(g, cluster_plate, -1)

            # Cluster assignments/contributions/probabilities/weights:
            # Shape(p)      = [Nn,..,N0,K]
            p = u_parents[0][0]
            
            # Weighted average of g over the clusters. As p and g are
            # properly aligned, you can just sum p*g over the last
            # axis and utilize broadcasting:
            # Shape(result) = [Nn,..,N0]
            #print('mixture.compute_g_from_parents p and g:', np.shape(p), np.shape(g))
            g = utils.sum_product(p, g, axes_to_sum=-1)

            #print('mixture.compute_g_from_parents g:', np.sum(g), np.shape(g))

            return g
Exemplo n.º 5
0
        def integrated_logpdf_from_parents(self, x, index):
            """ Approximates the posterior predictive pdf \int
            p(x|parents) q(parents) dparents in log-scale as \int
            q(parents_i) exp( \int q(parents_\i) \log p(x|parents)
            dparents_\i ) dparents_i."""

            if index == 0:
                # Integrate out the cluster assignments

                # First, integrate the cluster parameters in log-scale

                # compute_logpdf(cls, u, phi, g, f):

                # Shape(x) = [M1,..,Mm,N1,..,Nn,D1,..,Dd]
                # Add the cluster axis to x:
                # Shape(x) = [M1,..,Mm,N1,..,1,..,Nn,D1,..,Dd]
                cluster_axis = cluster_plate - distribution.ndim_observations
                x = np.expand_dims(x, axis=cluster_axis)

                u_parents = self.moments_from_parents()

                # Shape(u) = [M1,..,Mm,N1,..,1,..,Nn,D1,..,Dd]
                # Shape(f) = [M1,..,Mm,N1,..,1,..,Nn]
                (u, f) = distribution.compute_fixed_u_and_f(x)
                # Shape(phi) = [N1,..,K,..,Nn,D1,..,Dd]
                phi = distribution.compute_phi_from_parents(u_parents[1:])
                # Shape(g) = [N1,..,K,..,Nn]
                g = distribution.compute_g_from_parents(u_parents[1:])
                # Shape(lpdf) = [M1,..,Mm,N1,..,K,..,Nn]
                lpdf = distribution.compute_logpdf(u, phi, g, f)

                # From logpdf to pdf, but avoid over/underflow
                lpdf_max = np.max(lpdf, axis=cluster_plate, keepdims=True)
                pdf = np.exp(lpdf - lpdf_max)

                # Move cluster axis to be the last:
                # Shape(pdf) = [M1,..,Mm,N1,..,Nn,K]
                pdf = utils.moveaxis(pdf, cluster_plate, -1)

                #print('integrated_logpdf', pdf)

                # Cluster assignments/probabilities/weights
                # Shape(p) = [N1,..,Nn,K]
                p = u_parents[0][0]

                #self.parents[0].show()
                #print('integrated_logpdf, p:', p)

                # Weighted average. TODO/FIXME: Use einsum!
                # Shape(pdf) = [M1,..,Mm,N1,..,Nn]
                pdf = np.sum(pdf * p, axis=cluster_plate)

                #print('integrated_logpdf', pdf)

                # Back to log-scale (add the overflow fix!)
                lpdf_max = np.squeeze(lpdf_max, axis=cluster_plate)
                lpdf = np.log(pdf) + lpdf_max

                return lpdf

            raise NotImplementedError()
Exemplo n.º 6
0
        def compute_message(index, u, u_parents):
            """ . """

            #print('Mixture.compute_message:')

            if index == 0:

                # Shape(phi)    = [Nn,..,K,..,N0,Dd,..,D0]
                # Shape(L)      = [Nn,..,K,..,N0]
                # Shape(u)      = [Nn,..,N0,Dd,..,D0]
                # Shape(result) = [Nn,..,N0,K]

                # Compute g:
                # Shape(g)      = [Nn,..,K,..,N0]
                g = distribution.compute_g_from_parents(u_parents[1:])
                # Reshape(g):
                # Shape(g)      = [Nn,..,N0,K]
                g = utils.moveaxis(g, cluster_plate, -1)

                # Compute phi:
                # Shape(phi)    = [Nn,..,K,..,N0,Dd,..,D0]
                phi = distribution.compute_phi_from_parents(u_parents[1:])
                # Reshape phi:
                # Shape(phi)    = [Nn,..,N0,K,Dd,..,D0]
                for ind in range(len(phi)):
                    phi[ind] = utils.moveaxis(
                        phi[ind], cluster_plate - distribution.ndims[ind],
                        -1 - distribution.ndims[ind])

                # Reshape u:
                # Shape(u)      = [Nn,..,N0,1,Dd,..,D0]
                u_self = list()
                for ind in range(len(u)):
                    u_self.append(
                        np.expand_dims(u[ind],
                                       axis=(-1 - distribution.ndims[ind])))

                # Compute logpdf:
                # Shape(L)      = [Nn,..,N0,K]
                L = distribution.compute_logpdf(u_self, phi, g, 0)

                # Sum over other than the cluster dimensions? No!
                # Hmm.. I think the message passing method will do
                # that automatically

                ## print(np.shape(phi[0]))
                ## print(np.shape(u_self[0]))
                ## print(np.shape(g))
                ## print(np.shape(L))

                return [L]

            elif index >= 1:

                # Parent index for the distribution used for the
                # mixture.
                index = index - 1

                # Reshape u:
                # Shape(u)      = [Nn,..1,..,N0,Dd,..,D0]
                u_self = list()
                for ind in range(len(u)):
                    if cluster_plate < 0:
                        cluster_axis = cluster_plate - distribution.ndims[ind]
                    else:
                        cluster_axis = cluster_plate
                    u_self.append(np.expand_dims(u[ind], axis=cluster_axis))

                # Message from the mixed distribution
                m = distribution.compute_message(index, u_self, u_parents[1:])

                # Weigh the messages with the responsibilities
                for i in range(len(m)):

                    # Shape(m)      = [Nn,..,K,..,N0,Dd,..,D0]
                    # Shape(p)      = [Nn,..,N0,K]
                    # Shape(result) = [Nn,..,K,..,N0,Dd,..,D0]

                    # Number of axes for the variable dimensions for
                    # the parent message.
                    D = distribution.ndims_parents[index][i]

                    # Responsibilities for clusters are the first
                    # parent's first moment:
                    # Shape(p)      = [Nn,..,N0,K]
                    p = u_parents[0][0]
                    # Move the cluster axis to the proper place:
                    # Shape(p)      = [Nn,..,K,..,N0]
                    p = utils.moveaxis(p, -1, cluster_plate)
                    # Add axes for variable dimensions to the contributions
                    # Shape(p)      = [Nn,..,K,..,N0,1,..,1]
                    p = utils.add_trailing_axes(p, D)

                    if cluster_plate < 0:
                        # Add the variable dimensions
                        cluster_axis = cluster_plate - D

                    # Add axis for clusters:
                    # Shape(m)      = [Nn,..,1,..,N0,Dd,..,D0]
                    #m[i] = np.expand_dims(m[i], axis=cluster_axis)

                    #
                    # TODO: You could do summing here already so that
                    # you wouldn't compute huge matrices as
                    # intermediate result. Use einsum.

                    ## print(np.shape(m[i]))
                    ## print(np.shape(p))

                    # Compute the message contributions for each
                    # cluster:
                    # Shape(result) = [Nn,..,K,..,N0,Dd,..,D0]
                    m[i] = m[i] * p

                    #print(np.shape(m[i]))

                return m
Exemplo n.º 7
0
        def integrated_logpdf_from_parents(self, x, index):

            """ Approximates the posterior predictive pdf \int
            p(x|parents) q(parents) dparents in log-scale as \int
            q(parents_i) exp( \int q(parents_\i) \log p(x|parents)
            dparents_\i ) dparents_i."""

            if index == 0:
                # Integrate out the cluster assignments

                # First, integrate the cluster parameters in log-scale
                
                # compute_logpdf(cls, u, phi, g, f):

                # Shape(x) = [M1,..,Mm,N1,..,Nn,D1,..,Dd]
                # Add the cluster axis to x:
                # Shape(x) = [M1,..,Mm,N1,..,1,..,Nn,D1,..,Dd]
                cluster_axis = cluster_plate - distribution.ndim_observations
                x = np.expand_dims(x, axis=cluster_axis)

                u_parents = self.moments_from_parents()
                
                # Shape(u) = [M1,..,Mm,N1,..,1,..,Nn,D1,..,Dd]
                # Shape(f) = [M1,..,Mm,N1,..,1,..,Nn]
                (u, f) = distribution.compute_fixed_u_and_f(x)
                # Shape(phi) = [N1,..,K,..,Nn,D1,..,Dd]
                phi = distribution.compute_phi_from_parents(u_parents[1:])
                # Shape(g) = [N1,..,K,..,Nn]
                g = distribution.compute_g_from_parents(u_parents[1:])
                # Shape(lpdf) = [M1,..,Mm,N1,..,K,..,Nn]
                lpdf = distribution.compute_logpdf(u, phi, g, f)

                # From logpdf to pdf, but avoid over/underflow
                lpdf_max = np.max(lpdf, axis=cluster_plate, keepdims=True)
                pdf = np.exp(lpdf-lpdf_max)

                # Move cluster axis to be the last:
                # Shape(pdf) = [M1,..,Mm,N1,..,Nn,K]
                pdf = utils.moveaxis(pdf, cluster_plate, -1)

                #print('integrated_logpdf', pdf)
                
                # Cluster assignments/probabilities/weights
                # Shape(p) = [N1,..,Nn,K]
                p = u_parents[0][0]

                #self.parents[0].show()
                #print('integrated_logpdf, p:', p)
                
                # Weighted average. TODO/FIXME: Use einsum!
                # Shape(pdf) = [M1,..,Mm,N1,..,Nn]
                pdf = np.sum(pdf * p, axis=cluster_plate)

                #print('integrated_logpdf', pdf)
                
                # Back to log-scale (add the overflow fix!)
                lpdf_max = np.squeeze(lpdf_max, axis=cluster_plate)
                lpdf = np.log(pdf) + lpdf_max

                return lpdf

            raise NotImplementedError()
Exemplo n.º 8
0
        def compute_message(index, u, u_parents):
            """ . """

            #print('Mixture.compute_message:')
            
            if index == 0:

                # Shape(phi)    = [Nn,..,K,..,N0,Dd,..,D0]
                # Shape(L)      = [Nn,..,K,..,N0]
                # Shape(u)      = [Nn,..,N0,Dd,..,D0]
                # Shape(result) = [Nn,..,N0,K]

                # Compute g:
                # Shape(g)      = [Nn,..,K,..,N0]
                g = distribution.compute_g_from_parents(u_parents[1:])
                # Reshape(g):
                # Shape(g)      = [Nn,..,N0,K]
                g = utils.moveaxis(g, cluster_plate, -1)

                # Compute phi:
                # Shape(phi)    = [Nn,..,K,..,N0,Dd,..,D0]
                phi = distribution.compute_phi_from_parents(u_parents[1:])
                # Reshape phi:
                # Shape(phi)    = [Nn,..,N0,K,Dd,..,D0]
                for ind in range(len(phi)):
                    phi[ind] = utils.moveaxis(phi[ind],
                                              cluster_plate-distribution.ndims[ind],
                                              -1-distribution.ndims[ind])

                # Reshape u:
                # Shape(u)      = [Nn,..,N0,1,Dd,..,D0]
                u_self = list()
                for ind in range(len(u)):
                    u_self.append(np.expand_dims(u[ind],
                                                 axis=(-1-distribution.ndims[ind])))
                    
                # Compute logpdf:
                # Shape(L)      = [Nn,..,N0,K]
                L = distribution.compute_logpdf(u_self, phi, g, 0)
                
                # Sum over other than the cluster dimensions? No!
                # Hmm.. I think the message passing method will do
                # that automatically

                ## print(np.shape(phi[0]))
                ## print(np.shape(u_self[0]))
                ## print(np.shape(g))
                ## print(np.shape(L))
                
                return [L]

            elif index >= 1:

                # Parent index for the distribution used for the
                # mixture.
                index = index - 1

                # Reshape u:
                # Shape(u)      = [Nn,..1,..,N0,Dd,..,D0]
                u_self = list()
                for ind in range(len(u)):
                    if cluster_plate < 0:
                        cluster_axis = cluster_plate - distribution.ndims[ind]
                    else:
                        cluster_axis = cluster_plate
                    u_self.append(np.expand_dims(u[ind], axis=cluster_axis))
                    
                # Message from the mixed distribution
                m = distribution.compute_message(index, u_self, u_parents[1:])

                # Weigh the messages with the responsibilities
                for i in range(len(m)):

                    # Shape(m)      = [Nn,..,K,..,N0,Dd,..,D0]
                    # Shape(p)      = [Nn,..,N0,K]
                    # Shape(result) = [Nn,..,K,..,N0,Dd,..,D0]
                    
                    # Number of axes for the variable dimensions for
                    # the parent message.
                    D = distribution.ndims_parents[index][i]

                    # Responsibilities for clusters are the first
                    # parent's first moment:
                    # Shape(p)      = [Nn,..,N0,K]
                    p = u_parents[0][0]
                    # Move the cluster axis to the proper place:
                    # Shape(p)      = [Nn,..,K,..,N0]
                    p = utils.moveaxis(p, -1, cluster_plate)
                    # Add axes for variable dimensions to the contributions
                    # Shape(p)      = [Nn,..,K,..,N0,1,..,1]
                    p = utils.add_trailing_axes(p, D)

                    if cluster_plate < 0:
                        # Add the variable dimensions
                        cluster_axis = cluster_plate - D

                    # Add axis for clusters:
                    # Shape(m)      = [Nn,..,1,..,N0,Dd,..,D0]
                    #m[i] = np.expand_dims(m[i], axis=cluster_axis)
                        
                    #
                    # TODO: You could do summing here already so that
                    # you wouldn't compute huge matrices as
                    # intermediate result. Use einsum.

                    ## print(np.shape(m[i]))
                    ## print(np.shape(p))

                    # Compute the message contributions for each
                    # cluster:
                    # Shape(result) = [Nn,..,K,..,N0,Dd,..,D0]
                    m[i] = m[i] * p

                    #print(np.shape(m[i]))
                    
                return m