Exemplo n.º 1
0
def main(dictAlg, sortedAlgs, outputdir='.', verbose=True, function_targets_line=True):  # [1, 13, 101]
    """Generate one table per func with results of multiple algorithms."""
    """Difference with the first version:

    * numbers aligned using the decimal separator
    * premices for dispersion measure
    * significance test against best algorithm
    * table width...

    Takes ``targetsOfInterest`` from this file as "input argument" to compute
    the desired target values. ``targetsOfInterest`` might be configured via 
    config.
    
    """

    # TODO: method is long, terrible to read, split if possible

    if not bestalg.bestalgentries2009:
        bestalg.loadBBOB2009()

    # Sort data per dimension and function
    dictData = {}
    dsListperAlg = list(dictAlg[i] for i in sortedAlgs)
    for n, entries in enumerate(dsListperAlg):
        tmpdictdim = entries.dictByDim()
        for d in tmpdictdim:
            tmpdictfun = tmpdictdim[d].dictByFunc()
            for f in tmpdictfun:
                dictData.setdefault((d, f), {})[n] = tmpdictfun[f]

    nbtests = len(dictData)

    for df in dictData:
        # Generate one table per df
        # first update targets for each dimension-function pair if needed:
        targets = targetsOfInterest((df[1], df[0]))            
        targetf = targets[-1]
        
        # best 2009
        refalgentry = bestalg.bestalgentries2009[df]
        refalgert = refalgentry.detERT(targets)
        refalgevals = (refalgentry.detEvals((targetf, ))[0][0])
        refalgnbruns = len(refalgevals)
        refalgnbsucc = numpy.sum(numpy.isnan(refalgevals) == False)

        # Process the data
        # The following variables will be lists of elements each corresponding
        # to an algorithm
        algnames = []
        #algdata = []
        algerts = []
        algevals = []
        algdisp = []
        algnbsucc = []
        algnbruns = []
        algmedmaxevals = []
        algmedfinalfunvals = []
        algtestres = []
        algentries = []

        for n in sorted(dictData[df].keys()):
            entries = dictData[df][n]
            # the number of datasets for a given dimension and function (df)
            # should be strictly 1. TODO: find a way to warn
            # TODO: do this checking before... why wasn't it triggered by ppperprof?
            if len(entries) > 1:
                txt = ("There is more than a single entry associated with "
                       "folder %s on %d-D f%d." % (sortedAlgs[n], df[0], df[1]))
                raise Exception(txt)

            entry = entries[0]
            algentries.append(entry)

            algnames.append(sortedAlgs[n])

            evals = entry.detEvals(targets)
            #tmpdata = []
            tmpdisp = []
            tmpert = []
            for i, e in enumerate(evals):
                succ = (numpy.isnan(e) == False)
                ec = e.copy() # note: here was the previous bug (changes made in e also appeared in evals !)
                ec[succ == False] = entry.maxevals[succ == False]
                ert = toolsstats.sp(ec, issuccessful=succ)[0]
                #tmpdata.append(ert/refalgert[i])
                if succ.any():
                    tmp = toolsstats.drawSP(ec[succ], entry.maxevals[succ == False],
                                           [10, 50, 90], samplesize=samplesize)[0]
                    tmpdisp.append((tmp[-1] - tmp[0])/2.)
                else:
                    tmpdisp.append(numpy.nan)
                tmpert.append(ert)
            algerts.append(tmpert)
            algevals.append(evals)
            #algdata.append(tmpdata)
            algdisp.append(tmpdisp)
            algmedmaxevals.append(numpy.median(entry.maxevals))
            algmedfinalfunvals.append(numpy.median(entry.finalfunvals))
            #algmedmaxevals.append(numpy.median(entry.maxevals)/df[0])
            #algmedfinalfunvals.append(numpy.median(entry.finalfunvals))

            algtestres.append(significancetest(refalgentry, entry, targets))

            # determine success probability for Df = 1e-8
            e = entry.detEvals((targetf ,))[0]
            algnbsucc.append(numpy.sum(numpy.isnan(e) == False))
            algnbruns.append(len(e))

        # Process over all data
        # find best values...
            
        nalgs = len(dictData[df])
        maxRank = 1 + numpy.floor(0.14 * nalgs)  # number of algs to be displayed in bold

        isBoldArray = [] # Point out the best values
        algfinaldata = [] # Store median function values/median number of function evaluations
        tmptop = getTopIndicesOfColumns(algerts, maxRank=maxRank)
        for i, erts in enumerate(algerts):
            tmp = []
            for j, ert in enumerate(erts):  # algi targetj
                tmp.append(i in tmptop[j] or (nalgs > 7 and algerts[i][j] <= 3. * refalgert[j]))
            isBoldArray.append(tmp)
            algfinaldata.append((algmedfinalfunvals[i], algmedmaxevals[i]))

        # significance test of best given algorithm against all others
        best_alg_idx = numpy.array(algerts).argsort(0)[0, :]  # indexed by target index
        significance_versus_others = significance_all_best_vs_other(algentries, targets, best_alg_idx)[0]
                
        # Create the table
        table = []
        spec = r'@{}c@{}|*{%d}{@{\,}r@{}X@{\,}}|@{}r@{}@{}l@{}' % (len(targets)) # in case StrLeft not working: replaced c@{} with l@{ }
        spec = r'@{}c@{}|*{%d}{@{}r@{}X@{}}|@{}r@{}@{}l@{}' % (len(targets)) # in case StrLeft not working: replaced c@{} with l@{ }
        extraeol = []

        # Generate header lines
        if with_table_heading:
            header = funInfos[df[1]] if funInfos else 'f%d' % df[1]
            table.append([r'\multicolumn{%d}{@{\,}c@{\,}}{{\textbf{%s}}}'
                          % (2 * len(targets) + 2, header)])
            extraeol.append('')

        if function_targets_line is True or (function_targets_line and df[1] in function_targets_line):
            if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues):
                curline = [r'\#FEs/D']
                for i in targetsOfInterest.labels():
                    curline.append(r'\multicolumn{2}{@{}c@{}}{%s}'
                                % i) 
                                
            else:
                curline = [r'$\Delta f_\mathrm{opt}$']
                for t in targets:
                    curline.append(r'\multicolumn{2}{@{\,}X@{\,}}{%s}'
                                % writeFEvals2(t, precision=1, isscientific=True))
#                curline.append(r'\multicolumn{2}{@{\,}X@{}|}{%s}'
#                            % writeFEvals2(targets[-1], precision=1, isscientific=True))
            curline.append(r'\multicolumn{2}{@{}l@{}}{\#succ}')
            table.append(curline)
        extraeol.append(r'\hline')
#        extraeol.append(r'\hline\arrayrulecolor{tableShade}')

        curline = [r'ERT$_{\text{best}}$'] if with_table_heading else [r'\textbf{f%d}' % df[1]] 
        if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues):
            # write ftarget:fevals
            for i in xrange(len(refalgert[:-1])):
                temp="%.1e" %targetsOfInterest((df[1], df[0]))[i]
                if temp[-2]=="0":
                    temp=temp[:-2]+temp[-1]
                curline.append(r'\multicolumn{2}{@{}c@{}}{\textit{%s}:%s \quad}'
                                   % (temp,writeFEvalsMaxPrec(refalgert[i], 2)))
            temp="%.1e" %targetsOfInterest((df[1], df[0]))[-1]
            if temp[-2]=="0":
                temp=temp[:-2]+temp[-1]
            curline.append(r'\multicolumn{2}{@{}c@{}|}{\textit{%s}:%s }'
                               % (temp,writeFEvalsMaxPrec(refalgert[-1], 2))) 
        else:            
            # write #fevals of the reference alg
            for i in refalgert[:-1]:
                curline.append(r'\multicolumn{2}{@{}c@{}}{%s \quad}'
                                   % writeFEvalsMaxPrec(i, 2))
            curline.append(r'\multicolumn{2}{@{}c@{}|}{%s}'
                               % writeFEvalsMaxPrec(refalgert[-1], 2))
    
        # write the success ratio for the reference alg
        tmp2 = numpy.sum(numpy.isnan(refalgevals) == False) # count the nb of success
        curline.append('%d' % (tmp2))
        if tmp2 > 0:
            curline.append('/%d' % len(refalgevals))

        table.append(curline[:])
        extraeol.append('')

        #for i, gna in enumerate(zip((1, 2, 3), ('bla', 'blo', 'bli'))):
            #print i, gna, gno
            #set_trace()
        # Format data
        #if df == (5, 17):
            #set_trace()

        header = r'\providecommand{\ntables}{7}'
        for i, alg in enumerate(algnames):
            #algname, entries, irs, line, line2, succ, runs, testres1alg in zip(algnames,
            #data, dispersion, isBoldArray, isItalArray, nbsucc, nbruns, testres):
            commandname = r'\alg%stables' % numtotext(i)
#            header += r'\providecommand{%s}{{%s}{}}' % (commandname, str_to_latex(strip_pathname(alg)))
            header += r'\providecommand{%s}{\StrLeft{%s}{\ntables}}' % (commandname, str_to_latex(strip_pathname2(alg)))
            curline = [commandname + r'\hspace*{\fill}']  # each list element becomes a &-separated table entry?

            for j, tmp in enumerate(zip(algerts[i], algdisp[i],  # j is target index
                                        isBoldArray[i], algtestres[i])):
                ert, dispersion, isBold, testres = tmp
                alignment = '@{\,}X@{\,}'
                if j == len(algerts[i]) - 1:
                    alignment = '@{\,}X@{\,}|'

                data = ert/refalgert[j]
                # write star for significance against all other algorithms
                str_significance_subsup = ''
                if (len(best_alg_idx) > 0 and len(significance_versus_others) > 0 and 
                    i == best_alg_idx[j] and nbtests * significance_versus_others[j][1] < 0.05):
                    logp = -numpy.ceil(numpy.log10(nbtests * significance_versus_others[j][1]))
                    str_significance_subsup =  r"^{%s%s}" % (significance_vs_others_symbol, str(int(logp)) if logp > 1 else '')

                # moved out of the above else: this was a bug!?
                z, p = testres
                if (nbtests * p) < 0.05 and data < 1. and z < 0.: 
                    if not numpy.isinf(refalgert[j]):
                        tmpevals = algevals[i][j].copy()
                        tmpevals[numpy.isnan(tmpevals)] = algentries[i].maxevals[numpy.isnan(tmpevals)]
                        bestevals = refalgentry.detEvals(targets)
                        bestevals, bestalgalg = (bestevals[0][0], bestevals[1][0])
                        bestevals[numpy.isnan(bestevals)] = refalgentry.maxevals[bestalgalg][numpy.isnan(bestevals)]
                        tmpevals = numpy.array(sorted(tmpevals))[0:min(len(tmpevals), len(bestevals))]
                        bestevals = numpy.array(sorted(bestevals))[0:min(len(tmpevals), len(bestevals))]

                    #The conditions are now that ERT < ERT_best and
                    # all(sorted(FEvals_best) > sorted(FEvals_current)).
                    if numpy.isinf(refalgert[j]) or all(tmpevals < bestevals):
                        nbstars = -numpy.ceil(numpy.log10(nbtests * p))
                        # tmp2[-1] += r'$^{%s}$' % superscript
                        str_significance_subsup += r'_{%s%s}' % (significance_vs_ref_symbol, 
                                                                 str(int(nbstars)) if nbstars > 1 else '')
                if str_significance_subsup:
                    str_significance_subsup = '$%s$' % str_significance_subsup

                # format number in variable data
                if numpy.isnan(data):
                    curline.append(r'\multicolumn{2}{%s}{.}' % alignment)
                else:
                    if numpy.isinf(refalgert[j]):
                        curline.append(r'\multicolumn{2}{%s}{\textbf{%s}\mbox{\tiny (%s)}%s}'
                                       % (alignment,
                                          writeFEvalsMaxPrec(algerts[i][j], 2),
                                          writeFEvalsMaxPrec(dispersion, precdispersion), 
                                          str_significance_subsup))
                        continue

                    tmp = writeFEvalsMaxPrec(data, precfloat, maxfloatrepr=maxfloatrepr)
                    if data >= maxfloatrepr or data < 0.01: # either inf or scientific notation
                        if numpy.isinf(data) and j == len(algerts[i]) - 1:
                            tmp += r'\,\textit{%s}' % writeFEvalsMaxPrec(algfinaldata[i][1], 0, maxfloatrepr=maxfloatrepr)
                        else:
                            tmp = writeFEvalsMaxPrec(data, precscien, maxfloatrepr=data)
                            if isBold:
                                tmp = r'\textbf{%s}' % tmp

                        if not numpy.isnan(dispersion):
                            tmpdisp = dispersion/refalgert[j]
                            if tmpdisp >= maxfloatrepr or tmpdisp < 0.005: # TODO: hack
                                tmpdisp = writeFEvalsMaxPrec(tmpdisp, precdispersion, maxfloatrepr=tmpdisp)
                            else:
                                tmpdisp = writeFEvalsMaxPrec(tmpdisp, precdispersion, maxfloatrepr=maxfloatrepr)
                            tmp += r'\mbox{\tiny (%s)}' % tmpdisp
                        curline.append(r'\multicolumn{2}{%s}{%s%s}' % (alignment, tmp, str_significance_subsup))
                    else:
                        tmp2 = tmp.split('.', 1)
                        if len(tmp2) < 2:
                            tmp2.append('')
                        else:
                            tmp2[-1] = '.' + tmp2[-1]
                        if isBold:
                            tmp3 = []
                            for k in tmp2:
                                tmp3.append(r'\textbf{%s}' % k)
                            tmp2 = tmp3
                        if not numpy.isnan(dispersion):
                            tmpdisp = dispersion/refalgert[j]
                            if tmpdisp >= maxfloatrepr or tmpdisp < 0.01:
                                tmpdisp = writeFEvalsMaxPrec(tmpdisp, precdispersion, maxfloatrepr=tmpdisp)
                            else:
                                tmpdisp = writeFEvalsMaxPrec(tmpdisp, precdispersion, maxfloatrepr=maxfloatrepr)
                            tmp2[-1] += (r'\mbox{\tiny (%s)}' % (tmpdisp))
                        tmp2[-1] += str_significance_subsup
                        curline.extend(tmp2)
                                        
            curline.append('%d' % algnbsucc[i])
            curline.append('/%d' % algnbruns[i])
            table.append(curline)
            extraeol.append('')

        # Write table
        res = tableXLaTeX(table, spec=spec, extraeol=extraeol)
        try:
            filename = os.path.join(outputdir, 'pptables_f%03d_%02dD.tex' % (df[1], df[0]))
            f = open(filename, 'w')
            f.write(header + '\n')
            f.write(res)
            if verbose:
                print 'Wrote table in %s' % filename
        except:
            raise
        else:
            f.close()
Exemplo n.º 2
0
def main(dictAlg, sortedAlgs=None, target=ftarget_default, outputdir='ppdata', verbose=True):
    """From a DataSetList, returns figures showing the scaling: ERT/dim vs dim.
    
    One function and one target per figure.
    
    ``target`` can be a scalar, a list with one element or a 
    ``pproc.TargetValues`` instance with one target.
    
    ``sortedAlgs`` is a list of string-identifies (folder names)
    
    """
    # target becomes a TargetValues "list" with one element
    target = pproc.TargetValues.cast([target] if numpy.isscalar(target) else target)
    latex_commands_filename = os.path.join(outputdir, 'bbob_pproc_commands.tex')
    assert isinstance(target, pproc.TargetValues) 
    if len(target) != 1:
        raise ValueError('only a single target can be managed in ppfigs, ' + str(len(target)) + ' targets were given')
    
    dictFunc = pproc.dictAlgByFun(dictAlg)
    if sortedAlgs is None:
        sortedAlgs = sorted(dictAlg.keys())
    if not os.path.isdir(outputdir):
        os.mkdir(outputdir)
    for f in dictFunc:
        filename = os.path.join(outputdir,'ppfigs_f%03d' % (f))
        handles = []
        fix_styles(len(sortedAlgs))  # 
        for i, alg in enumerate(sortedAlgs):
            dictDim = dictFunc[f][alg].dictByDim()  # this does not look like the most obvious solution

            #Collect data
            dimert = []
            ert = []
            dimnbsucc = []
            ynbsucc = []
            nbsucc = []
            dimmaxevals = []
            maxevals = []
            dimmedian = []
            medianfes = []
            for dim in sorted(dictDim):
                assert len(dictDim[dim]) == 1
                entry = dictDim[dim][0]
                data = generateData(entry, target((f, dim))[0]) # TODO: here we might want a different target for each function
                if 1 < 3 or data[2] == 0: # No success
                    dimmaxevals.append(dim)
                    maxevals.append(float(data[3])/dim)
                if data[2] > 0:
                    dimmedian.append(dim)
                    medianfes.append(data[4]/dim)
                    dimert.append(dim)
                    ert.append(float(data[0])/dim)
                    if data[1] < 1.:
                        dimnbsucc.append(dim)
                        ynbsucc.append(float(data[0])/dim)
                        nbsucc.append('%d' % data[2])

            # Draw lines
            tmp = plt.plot(dimert, ert, **styles[i]) #label=alg, )
            plt.setp(tmp[0], markeredgecolor=plt.getp(tmp[0], 'color'))
            # For legend
            # tmp = plt.plot([], [], label=alg.replace('..' + os.sep, '').strip(os.sep), **styles[i])
            tmp = plt.plot([], [], label=alg.split(os.sep)[-1], **styles[i])
            plt.setp(tmp[0], markersize=12.,
                     markeredgecolor=plt.getp(tmp[0], 'color'))

            if dimmaxevals:
                tmp = plt.plot(dimmaxevals, maxevals, **styles[i])
                plt.setp(tmp[0], markersize=20, #label=alg,
                         markeredgecolor=plt.getp(tmp[0], 'color'),
                         markeredgewidth=1, 
                         markerfacecolor='None', linestyle='None')
                
            handles.append(tmp)
            #tmp2 = plt.plot(dimmedian, medianfes, ls='', marker='+',
            #               markersize=30, markeredgewidth=5,
            #               markeredgecolor=plt.getp(tmp, 'color'))[0]
            #for i, n in enumerate(nbsucc):
            #    plt.text(dimnbsucc[i], numpy.array(ynbsucc[i])*1.85, n,
            #             verticalalignment='bottom',
            #             horizontalalignment='center')

        if not bestalg.bestalgentries2009:
            bestalg.loadBBOB2009()

        bestalgdata = []
        dimbestalg = list(df[0] for df in bestalg.bestalgentries2009 if df[1] == f)
        dimbestalg.sort()
        dimbestalg2 = []
        for d in dimbestalg:
            entry = bestalg.bestalgentries2009[(d, f)]
            tmp = entry.detERT(target((f, d)))[0]
            if numpy.isfinite(tmp):
                bestalgdata.append(float(tmp)/d)
                dimbestalg2.append(d)

        tmp = plt.plot(dimbestalg2, bestalgdata, color=refcolor, linewidth=10,
                       marker='d', markersize=25, markeredgecolor=refcolor, zorder=-1
                       #label='best 2009', 
                       )
        handles.append(tmp)
        
        if show_significance: # plot significance-stars
            xstar, ystar = [], []
            dims = sorted(pproc.dictAlgByDim(dictFunc[f]))
            for i, dim in enumerate(dims):
                datasets = pproc.dictAlgByDim(dictFunc[f])[dim]
                assert all([len(datasets[ialg]) == 1 for ialg in sortedAlgs if datasets[ialg]])
                dsetlist =  [datasets[ialg][0] for ialg in sortedAlgs if datasets[ialg]]
                if len(dsetlist) > 1:
                    arzp, arialg = toolsstats.significance_all_best_vs_other(dsetlist, target((f, dim)))
                    if arzp[0][1] * len(dims) < show_significance:
                        ert = dsetlist[arialg[0]].detERT(target((f, dim)))[0]
                        if ert < numpy.inf: 
                            xstar.append(dim)
                            ystar.append(ert/dim)

            plt.plot(xstar, ystar, 'k*', markerfacecolor=None, markeredgewidth=2, markersize=0.5*styles[0]['markersize'])
        if funInfos:
            plt.gca().set_title(funInfos[f])

        isLegend = False
        if legend:
            plotLegend(handles)
        elif 1 < 3:
            if f in (1, 24, 101, 130) and len(sortedAlgs) < 6: # 6 elements at most in the boxed legend
                isLegend = True

        beautify(legend=isLegend, rightlegend=legend)

        plt.text(plt.xlim()[0], plt.ylim()[0], 'target ' + target.label_name() + ': ' + target.label(0))  # TODO: check

        saveFigure(filename, verbose=verbose)

        plt.close()

    # generate commands in tex file:
    try:
        abc = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
        alg_definitions = []
        for i in range(len(sortedAlgs)):
            symb = r'{%s%s}' % (color_to_latex(styles[i]['color']),
                                marker_to_latex(styles[i]['marker']))
            alg_definitions.append((', ' if i > 0 else '') + '%s:%s' % (symb, '\\algorithm' + abc[i % len(abc)]))
        toolsdivers.prepend_to_file(latex_commands_filename, 
                [#'\\providecommand{\\bbobppfigsftarget}{\\ensuremath{10^{%s}}}' 
                 #       % target.loglabel(0), # int(numpy.round(numpy.log10(target))),
                '\\providecommand{\\bbobppfigslegend}[1]{',
                scaling_figure_caption(target), 
                'Legend: '] + alg_definitions + ['}']
                )
        toolsdivers.prepend_to_file(latex_commands_filename, 
                ['\\providecommand{\\bbobECDFslegend}[1]{',
                ecdfs_figure_caption(target), '}']
                )


        if verbose:
            print 'Wrote commands and legend to %s' % filename

        # this is obsolete (however check templates)
        filename = os.path.join(outputdir,'ppfigs.tex') 
        f = open(filename, 'w')
        f.write('% Do not modify this file: calls to post-processing software'
                + ' will overwrite any modification.\n')
        f.write('Legend: ')
        
        for i in range(0, len(sortedAlgs)):
            symb = r'{%s%s}' % (color_to_latex(styles[i]['color']),
                                marker_to_latex(styles[i]['marker']))
            f.write((', ' if i > 0 else '') + '%s:%s' % (symb, writeLabels(sortedAlgs[i])))
        f.close()    
        if verbose:
            print '(obsolete) Wrote legend in %s' % filename
    except IOError:
        raise


        handles.append(tmp)

        if funInfos:
            plt.gca().set_title(funInfos[f])

        beautify(rightlegend=legend)

        if legend:
            plotLegend(handles)
        else:
            if f in (1, 24, 101, 130):
                plt.legend()

        saveFigure(filename, figFormat=genericsettings.fig_formats, verbose=verbose)

        plt.close()
Exemplo n.º 3
0
def main(dictAlg,
         sortedAlgs,
         outputdir='.',
         verbose=True,
         function_targets_line=True):  # [1, 13, 101]
    """Generate one table per func with results of multiple algorithms."""
    """Difference with the first version:

    * numbers aligned using the decimal separator
    * premices for dispersion measure
    * significance test against best algorithm
    * table width...

    Takes ``targetsOfInterest`` from this file as "input argument" to compute
    the desired target values. ``targetsOfInterest`` might be configured via 
    config.
    
    """

    # TODO: method is long, terrible to read, split if possible

    if not bestalg.bestalgentries2009:
        bestalg.loadBBOB2009()

    # Sort data per dimension and function
    dictData = {}
    dsListperAlg = list(dictAlg[i] for i in sortedAlgs)
    for n, entries in enumerate(dsListperAlg):
        tmpdictdim = entries.dictByDim()
        for d in tmpdictdim:
            tmpdictfun = tmpdictdim[d].dictByFunc()
            for f in tmpdictfun:
                dictData.setdefault((d, f), {})[n] = tmpdictfun[f]

    nbtests = len(dictData)

    for df in dictData:
        # Generate one table per df
        # first update targets for each dimension-function pair if needed:
        targets = targetsOfInterest((df[1], df[0]))
        targetf = targets[-1]

        # best 2009
        refalgentry = bestalg.bestalgentries2009[df]
        refalgert = refalgentry.detERT(targets)
        refalgevals = (refalgentry.detEvals((targetf, ))[0][0])
        refalgnbruns = len(refalgevals)
        refalgnbsucc = numpy.sum(numpy.isnan(refalgevals) == False)

        # Process the data
        # The following variables will be lists of elements each corresponding
        # to an algorithm
        algnames = []
        #algdata = []
        algerts = []
        algevals = []
        algdisp = []
        algnbsucc = []
        algnbruns = []
        algmedmaxevals = []
        algmedfinalfunvals = []
        algtestres = []
        algentries = []

        for n in sorted(dictData[df].keys()):
            entries = dictData[df][n]
            # the number of datasets for a given dimension and function (df)
            # should be strictly 1. TODO: find a way to warn
            # TODO: do this checking before... why wasn't it triggered by ppperprof?
            if len(entries) > 1:
                print entries
                txt = ("There is more than a single entry associated with "
                       "folder %s on %d-D f%d." %
                       (sortedAlgs[n], df[0], df[1]))
                raise Exception(txt)

            entry = entries[0]
            algentries.append(entry)

            algnames.append(sortedAlgs[n])

            evals = entry.detEvals(targets)
            #tmpdata = []
            tmpdisp = []
            tmpert = []
            for i, e in enumerate(evals):
                succ = (numpy.isnan(e) == False)
                ec = e.copy(
                )  # note: here was the previous bug (changes made in e also appeared in evals !)
                ec[succ == False] = entry.maxevals[succ == False]
                ert = toolsstats.sp(ec, issuccessful=succ)[0]
                #tmpdata.append(ert/refalgert[i])
                if succ.any():
                    tmp = toolsstats.drawSP(ec[succ],
                                            entry.maxevals[succ == False],
                                            [10, 50, 90],
                                            samplesize=samplesize)[0]
                    tmpdisp.append((tmp[-1] - tmp[0]) / 2.)
                else:
                    tmpdisp.append(numpy.nan)
                tmpert.append(ert)
            algerts.append(tmpert)
            algevals.append(evals)
            #algdata.append(tmpdata)
            algdisp.append(tmpdisp)
            algmedmaxevals.append(numpy.median(entry.maxevals))
            algmedfinalfunvals.append(numpy.median(entry.finalfunvals))
            #algmedmaxevals.append(numpy.median(entry.maxevals)/df[0])
            #algmedfinalfunvals.append(numpy.median(entry.finalfunvals))

            algtestres.append(significancetest(refalgentry, entry, targets))

            # determine success probability for Df = 1e-8
            e = entry.detEvals((targetf, ))[0]
            algnbsucc.append(numpy.sum(numpy.isnan(e) == False))
            algnbruns.append(len(e))

        # Process over all data
        # find best values...

        nalgs = len(dictData[df])
        maxRank = 1 + numpy.floor(
            0.14 * nalgs)  # number of algs to be displayed in bold

        isBoldArray = []  # Point out the best values
        algfinaldata = [
        ]  # Store median function values/median number of function evaluations
        tmptop = getTopIndicesOfColumns(algerts, maxRank=maxRank)
        for i, erts in enumerate(algerts):
            tmp = []
            for j, ert in enumerate(erts):  # algi targetj
                tmp.append(i in tmptop[j] or
                           (nalgs > 7 and algerts[i][j] <= 3. * refalgert[j]))
            isBoldArray.append(tmp)
            algfinaldata.append((algmedfinalfunvals[i], algmedmaxevals[i]))

        # significance test of best given algorithm against all others
        best_alg_idx = numpy.array(algerts).argsort(0)[
            0, :]  # indexed by target index
        significance_versus_others = significance_all_best_vs_other(
            algentries, targets, best_alg_idx)[0]

        # Create the table
        table = []
        tableHtml = []
        spec = r'@{}c@{}|*{%d}{@{\,}r@{}X@{\,}}|@{}r@{}@{}l@{}' % (
            len(targets)
        )  # in case StrLeft not working: replaced c@{} with l@{ }
        spec = r'@{}c@{}|*{%d}{@{}r@{}X@{}}|@{}r@{}@{}l@{}' % (
            len(targets)
        )  # in case StrLeft not working: replaced c@{} with l@{ }
        extraeol = []

        # Generate header lines
        if with_table_heading:
            header = funInfos[df[1]] if funInfos else 'f%d' % df[1]
            table.append([
                r'\multicolumn{%d}{@{\,}c@{\,}}{{\textbf{%s}}}' %
                (2 * len(targets) + 2, header)
            ])
            extraeol.append('')

        if function_targets_line is True or (function_targets_line and df[1]
                                             in function_targets_line):
            if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues):
                curline = [r'\#FEs/D']
                curlineHtml = ['<thead>\n<tr>\n<th>#FEs/D<br>REPLACEH</th>\n']
                counter = 1
                for i in targetsOfInterest.labels():
                    curline.append(r'\multicolumn{2}{@{}c@{}}{%s}' % i)
                    curlineHtml.append('<td>%s<br>REPLACE%d</td>\n' %
                                       (i, counter))
                    counter += 1
            else:
                curline = [r'$\Delta f_\mathrm{opt}$']
                curlineHtml = [
                    '<thead>\n<tr>\n<th>&#916; f<sub>opt</sub><br>REPLACEH</th>\n'
                ]
                counter = 1
                for t in targets:
                    curline.append(
                        r'\multicolumn{2}{@{\,}X@{\,}}{%s}' %
                        writeFEvals2(t, precision=1, isscientific=True))
                    curlineHtml.append(
                        '<td>%s<br>REPLACE%d</td>\n' % (writeFEvals2(
                            t, precision=1, isscientific=True), counter))
                    counter += 1
#                curline.append(r'\multicolumn{2}{@{\,}X@{}|}{%s}'
#                            % writeFEvals2(targets[-1], precision=1, isscientific=True))
            curline.append(r'\multicolumn{2}{@{}l@{}}{\#succ}')
            curlineHtml.append('<td>#succ<br>REPLACEF</td>\n</tr>\n</thead>\n')
            table.append(curline)

        extraeol.append(r'\hline')
        #        extraeol.append(r'\hline\arrayrulecolor{tableShade}')

        curline = [r'ERT$_{\text{best}}$'
                   ] if with_table_heading else [r'\textbf{f%d}' % df[1]]
        replaceValue = 'ERT<sub>best</sub>' if with_table_heading else (
            '<b>f%d</b>' % df[1])
        curlineHtml = [
            item.replace('REPLACEH', replaceValue) for item in curlineHtml
        ]
        if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues):
            # write ftarget:fevals
            counter = 1
            for i in xrange(len(refalgert[:-1])):
                temp = "%.1e" % targetsOfInterest((df[1], df[0]))[i]
                if temp[-2] == "0":
                    temp = temp[:-2] + temp[-1]
                curline.append(
                    r'\multicolumn{2}{@{}c@{}}{\textit{%s}:%s \quad}' %
                    (temp, writeFEvalsMaxPrec(refalgert[i], 2)))
                replaceValue = '<i>%s</i>:%s' % (
                    temp, writeFEvalsMaxPrec(refalgert[i], 2))
                curlineHtml = [
                    item.replace('REPLACE%d' % counter, replaceValue)
                    for item in curlineHtml
                ]
                counter += 1

            temp = "%.1e" % targetsOfInterest((df[1], df[0]))[-1]
            if temp[-2] == "0":
                temp = temp[:-2] + temp[-1]
            curline.append(r'\multicolumn{2}{@{}c@{}|}{\textit{%s}:%s }' %
                           (temp, writeFEvalsMaxPrec(refalgert[-1], 2)))
            replaceValue = '<i>%s</i>:%s' % (
                temp, writeFEvalsMaxPrec(refalgert[-1], 2))
            curlineHtml = [
                item.replace('REPLACE%d' % counter, replaceValue)
                for item in curlineHtml
            ]
        else:
            # write #fevals of the reference alg
            counter = 1
            for i in refalgert[:-1]:
                curline.append(r'\multicolumn{2}{@{}c@{}}{%s \quad}' %
                               writeFEvalsMaxPrec(i, 2))
                curlineHtml = [
                    item.replace('REPLACE%d' % counter,
                                 writeFEvalsMaxPrec(i, 2))
                    for item in curlineHtml
                ]
                counter += 1
            curline.append(r'\multicolumn{2}{@{}c@{}|}{%s}' %
                           writeFEvalsMaxPrec(refalgert[-1], 2))
            curlineHtml = [
                item.replace('REPLACE%d' % counter,
                             writeFEvalsMaxPrec(refalgert[-1], 2))
                for item in curlineHtml
            ]

        # write the success ratio for the reference alg
        tmp2 = numpy.sum(
            numpy.isnan(refalgevals) == False)  # count the nb of success
        curline.append('%d' % (tmp2))
        if tmp2 > 0:
            curline.append('/%d' % len(refalgevals))
            replaceValue = '%d/%d' % (tmp2, len(refalgevals))
        else:
            replaceValue = '%d' % tmp2
        curlineHtml = [
            item.replace('REPLACEF', replaceValue) for item in curlineHtml
        ]

        table.append(curline[:])
        tableHtml.extend(curlineHtml[:])
        tableHtml.append('<tbody>\n')
        extraeol.append('')

        #for i, gna in enumerate(zip((1, 2, 3), ('bla', 'blo', 'bli'))):
        #print i, gna, gno
        #set_trace()
        # Format data
        #if df == (5, 17):
        #set_trace()

        header = r'\providecommand{\ntables}{7}'
        for i, alg in enumerate(algnames):
            tableHtml.append('<tr>\n')
            #algname, entries, irs, line, line2, succ, runs, testres1alg in zip(algnames,
            #data, dispersion, isBoldArray, isItalArray, nbsucc, nbruns, testres):
            commandname = r'\alg%stables' % numtotext(i)
            #            header += r'\providecommand{%s}{{%s}{}}' % (commandname, str_to_latex(strip_pathname(alg)))
            header += r'\providecommand{%s}{\StrLeft{%s}{\ntables}}' % (
                commandname, str_to_latex(strip_pathname1(alg)))
            curline = [
                commandname + r'\hspace*{\fill}'
            ]  # each list element becomes a &-separated table entry?
            curlineHtml = [
                '<th>%s</th>\n' % str_to_latex(strip_pathname1(alg))
            ]

            for j, tmp in enumerate(
                    zip(
                        algerts[i],
                        algdisp[i],  # j is target index
                        isBoldArray[i],
                        algtestres[i])):
                ert, dispersion, isBold, testres = tmp
                alignment = '@{\,}X@{\,}'
                if j == len(algerts[i]) - 1:
                    alignment = '@{\,}X@{\,}|'

                data = ert / refalgert[j]
                # write star for significance against all other algorithms
                str_significance_subsup = ''
                str_significance_subsup_html = ''
                if (len(best_alg_idx) > 0
                        and len(significance_versus_others) > 0
                        and i == best_alg_idx[j]
                        and nbtests * significance_versus_others[j][1] < 0.05):
                    logp = -numpy.ceil(
                        numpy.log10(
                            nbtests * significance_versus_others[j][1]))
                    logp = numpy.min(
                        (9,
                         logp))  # not messing up the format and handling inf
                    str_significance_subsup = r"^{%s%s}" % (
                        significance_vs_others_symbol,
                        str(int(logp)) if logp > 1 else '')
                    str_significance_subsup_html = '<sup>%s%s</sup>' % (
                        significance_vs_others_symbol_html,
                        str(int(logp)) if logp > 1 else '')

                # moved out of the above else: this was a bug!?
                z, p = testres
                if (nbtests * p) < 0.05 and data < 1. and z < 0.:
                    if not numpy.isinf(refalgert[j]):
                        tmpevals = algevals[i][j].copy()
                        tmpevals[numpy.isnan(tmpevals)] = algentries[
                            i].maxevals[numpy.isnan(tmpevals)]
                        bestevals = refalgentry.detEvals(targets)
                        bestevals, bestalgalg = (bestevals[0][0],
                                                 bestevals[1][0])
                        bestevals[numpy.isnan(
                            bestevals)] = refalgentry.maxevals[bestalgalg][
                                numpy.isnan(bestevals)]
                        tmpevals = numpy.array(sorted(
                            tmpevals))[0:min(len(tmpevals), len(bestevals))]
                        bestevals = numpy.array(sorted(
                            bestevals))[0:min(len(tmpevals), len(bestevals))]

                    #The conditions are now that ERT < ERT_best and
                    # all(sorted(FEvals_best) > sorted(FEvals_current)).
                    if numpy.isinf(refalgert[j]) or all(tmpevals < bestevals):
                        nbstars = -numpy.ceil(numpy.log10(nbtests * p))
                        # tmp2[-1] += r'$^{%s}$' % superscript
                        str_significance_subsup += r'_{%s%s}' % (
                            significance_vs_ref_symbol,
                            str(int(nbstars)) if nbstars > 1 else '')
                        str_significance_subsup_html = '<sub>%s%s</sub>' % (
                            significance_vs_ref_symbol_html,
                            str(int(nbstars)) if nbstars > 1 else '')
                if str_significance_subsup:
                    str_significance_subsup = '$%s$' % str_significance_subsup

                # format number in variable data
                if numpy.isnan(data):
                    curline.append(r'\multicolumn{2}{%s}{.}' % alignment)
                else:
                    if numpy.isinf(refalgert[j]):
                        curline.append(
                            r'\multicolumn{2}{%s}{\textbf{%s}\mbox{\tiny (%s)}%s}'
                            % (alignment, writeFEvalsMaxPrec(algerts[i][j], 2),
                               writeFEvalsMaxPrec(dispersion, precdispersion),
                               str_significance_subsup))
                        curlineHtml.append(
                            '<td sorttable_customkey=\"%f\"><b>%s</b> (%s)%s</td>\n'
                            % (algerts[i][j],
                               writeFEvalsMaxPrec(algerts[i][j], 2),
                               writeFEvalsMaxPrec(dispersion, precdispersion),
                               str_significance_subsup_html))
                        continue

                    tmp = writeFEvalsMaxPrec(data,
                                             precfloat,
                                             maxfloatrepr=maxfloatrepr)
                    tmpHtml = writeFEvalsMaxPrec(data,
                                                 precfloat,
                                                 maxfloatrepr=maxfloatrepr)
                    sortKey = data
                    if data >= maxfloatrepr or data < 0.01:  # either inf or scientific notation
                        if numpy.isinf(data) and j == len(algerts[i]) - 1:
                            tmp += r'\,\textit{%s}' % writeFEvalsMaxPrec(
                                algfinaldata[i][1],
                                0,
                                maxfloatrepr=maxfloatrepr)
                            tmpHtml += '<i>%s</i>' % writeFEvalsMaxPrec(
                                algfinaldata[i][1],
                                0,
                                maxfloatrepr=maxfloatrepr)
                            sortKey = algfinaldata[i][1]
                        else:
                            tmp = writeFEvalsMaxPrec(data,
                                                     precscien,
                                                     maxfloatrepr=data)
                            if isBold:
                                tmpHtml = '<b>%s</b>' % tmp
                                tmp = r'\textbf{%s}' % tmp

                        if not numpy.isnan(dispersion):
                            tmpdisp = dispersion / refalgert[j]
                            if tmpdisp >= maxfloatrepr or tmpdisp < 0.005:  # TODO: hack
                                tmpdisp = writeFEvalsMaxPrec(
                                    tmpdisp,
                                    precdispersion,
                                    maxfloatrepr=tmpdisp)
                            else:
                                tmpdisp = writeFEvalsMaxPrec(
                                    tmpdisp,
                                    precdispersion,
                                    maxfloatrepr=maxfloatrepr)
                            tmp += r'\mbox{\tiny (%s)}' % tmpdisp
                            tmpHtml += ' (%s)' % tmpdisp
                        curline.append(
                            r'\multicolumn{2}{%s}{%s%s}' %
                            (alignment, tmp, str_significance_subsup))
                        tmpHtml = tmpHtml.replace('$\infty$', '&infin;')
                        if (numpy.isinf(sortKey)):
                            sortKey = sys.maxint
                        curlineHtml.append(
                            '<td sorttable_customkey=\"%f\">%s%s</td>' %
                            (sortKey, tmpHtml, str_significance_subsup_html))
                    else:
                        tmp2 = tmp.split('.', 1)
                        if len(tmp2) < 2:
                            tmp2.append('')
                        else:
                            tmp2[-1] = '.' + tmp2[-1]
                        if isBold:
                            tmp3 = []
                            tmp3html = []
                            for k in tmp2:
                                tmp3.append(r'\textbf{%s}' % k)
                                tmp3html.append('<b>%s</b>' % k)
                            tmp2 = tmp3
                            tmp2html = tmp3html
                        else:
                            tmp2html = []
                            tmp2html.extend(tmp2)
                        if not numpy.isnan(dispersion):
                            tmpdisp = dispersion / refalgert[j]
                            if tmpdisp >= maxfloatrepr or tmpdisp < 0.01:
                                tmpdisp = writeFEvalsMaxPrec(
                                    tmpdisp,
                                    precdispersion,
                                    maxfloatrepr=tmpdisp)
                            else:
                                tmpdisp = writeFEvalsMaxPrec(
                                    tmpdisp,
                                    precdispersion,
                                    maxfloatrepr=maxfloatrepr)
                            tmp2[-1] += (r'\mbox{\tiny (%s)}' % (tmpdisp))
                            tmp2html[-1] += ' (%s)' % tmpdisp
                        tmp2[-1] += str_significance_subsup
                        tmp2html[-1] += str_significance_subsup_html
                        curline.extend(tmp2)
                        tmp2html = ("").join(str(item) for item in tmp2html)
                        tmp2html = tmp2html.replace('$\infty$', '&infin;')
                        curlineHtml.append(
                            '<td sorttable_customkey=\"%f\">%s</td>' %
                            (data, tmp2html))

            curline.append('%d' % algnbsucc[i])
            curline.append('/%d' % algnbruns[i])
            table.append(curline)
            curlineHtml.append('<td sorttable_customkey=\"%d\">%d/%d</td>\n' %
                               (algnbsucc[i], algnbsucc[i], algnbruns[i]))
            tableHtml.extend(curlineHtml[:])
            extraeol.append('')

        # Write table
        res = tableXLaTeX(table, spec=spec, extraeol=extraeol)
        try:
            filename = os.path.join(
                outputdir, 'pptables_f%03d_%02dD.tex' % (df[1], df[0]))
            f = open(filename, 'w')
            f.write(header + '\n')
            f.write(res)

            res = ("").join(str(item) for item in tableHtml)
            res = '\n<table class=\"sortable\" style=\"width:800px \">\n%s</table>\n<p/>\n' % res

            if df[0] in (5, 20):
                filename = os.path.join(
                    outputdir,
                    genericsettings.many_algorithm_file_name + '.html')
                lines = []
                with open(filename) as infile:
                    for line in infile:
                        if '<!--' + 'pptablesf%03d%02dDHtml' % (
                                df[1], df[0]) + '-->' in line:
                            lines.append(res)
                        lines.append(line)

                with open(filename, 'w') as outfile:
                    for line in lines:
                        outfile.write(line)

            if verbose:
                print 'Wrote table in %s' % filename
        except:
            raise
        else:
            f.close()
Exemplo n.º 4
0
def main(dictAlg,
         sortedAlgs,
         targets,
         outputdir='.',
         verbose=True,
         function_targets_line=True):  # [1, 13, 101]
    """Generate one table per func with results of multiple algorithms."""
    """Difference with the first version:

    * numbers aligned using the decimal separator
    * premices for dispersion measure
    * significance test against best algorithm
    * table width...

    """

    # TODO: method is long, terrible to read, split if possible

    if not bestalg.bestalgentries2009:
        bestalg.loadBBOB2009()

    # Sort data per dimension and function
    dictData = {}
    dsListperAlg = list(dictAlg[i] for i in sortedAlgs)
    for n, entries in enumerate(dsListperAlg):
        tmpdictdim = entries.dictByDim()
        for d in tmpdictdim:
            tmpdictfun = tmpdictdim[d].dictByFunc()
            for f in tmpdictfun:
                dictData.setdefault((d, f), {})[n] = tmpdictfun[f]

    nbtests = len(dictData)

    for df in dictData:
        # Generate one table per df

        # best 2009
        refalgentry = bestalg.bestalgentries2009[df]
        refalgert = refalgentry.detERT(targets)
        refalgevals = (refalgentry.detEvals((targetf, ))[0][0])
        refalgnbruns = len(refalgevals)
        refalgnbsucc = numpy.sum(numpy.isnan(refalgevals) == False)

        # Process the data
        # The following variables will be lists of elements each corresponding
        # to an algorithm
        algnames = []
        #algdata = []
        algerts = []
        algevals = []
        algdisp = []
        algnbsucc = []
        algnbruns = []
        algmedmaxevals = []
        algmedfinalfunvals = []
        algtestres = []
        algentries = []

        for n in sorted(dictData[df].keys()):
            entries = dictData[df][n]
            # the number of datasets for a given dimension and function (df)
            # should be strictly 1. TODO: find a way to warn
            # TODO: do this checking before... why wasn't it triggered by ppperprof?
            if len(entries) > 1:
                txt = ("There is more than a single entry associated with "
                       "folder %s on %d-D f%d." %
                       (sortedAlgs[n], df[0], df[1]))
                raise Exception(txt)

            entry = entries[0]
            algentries.append(entry)

            algnames.append(sortedAlgs[n])

            evals = entry.detEvals(targets)
            #tmpdata = []
            tmpdisp = []
            tmpert = []
            for i, e in enumerate(evals):
                succ = (numpy.isnan(e) == False)
                e[succ == False] = entry.maxevals[succ == False]
                ert = toolsstats.sp(e, issuccessful=succ)[0]
                #tmpdata.append(ert/refalgert[i])
                if succ.any():
                    tmp = toolsstats.drawSP(e[succ],
                                            entry.maxevals[succ == False],
                                            [10, 50, 90],
                                            samplesize=samplesize)[0]
                    tmpdisp.append((tmp[-1] - tmp[0]) / 2.)
                else:
                    tmpdisp.append(numpy.nan)
                tmpert.append(ert)
            algerts.append(tmpert)
            algevals.append(evals)
            #algdata.append(tmpdata)
            algdisp.append(tmpdisp)
            algmedmaxevals.append(numpy.median(entry.maxevals))
            algmedfinalfunvals.append(numpy.median(entry.finalfunvals))
            #algmedmaxevals.append(numpy.median(entry.maxevals)/df[0])
            #algmedfinalfunvals.append(numpy.median(entry.finalfunvals))

            algtestres.append(significancetest(refalgentry, entry, targets))

            # determine success probability for Df = 1e-8
            e = entry.detEvals((targetf, ))[0]
            algnbsucc.append(numpy.sum(numpy.isnan(e) == False))
            algnbruns.append(len(e))

        # Process over all data
        # find best values...

        nalgs = len(dictData[df])
        maxRank = 1 + numpy.floor(
            0.14 * nalgs)  # number of algs to be displayed in bold

        isBoldArray = []  # Point out the best values
        algfinaldata = [
        ]  # Store median function values/median number of function evaluations
        tmptop = getTopIndicesOfColumns(algerts, maxRank=maxRank)
        for i, erts in enumerate(algerts):
            tmp = []
            for j, ert in enumerate(erts):  # algi targetj
                tmp.append(i in tmptop[j] or
                           (nalgs > 7 and algerts[i][j] <= 3. * refalgert[j]))
            isBoldArray.append(tmp)
            algfinaldata.append((algmedfinalfunvals[i], algmedmaxevals[i]))

        # significance test of best given algorithm against all others
        best_alg_idx = numpy.array(algerts).argsort(0)[
            0, :]  # indexed by target index
        significance_versus_others = significance_all_best_vs_other(
            algentries, targets, best_alg_idx)[0]

        # Create the table
        table = []
        spec = r'@{}c@{}|*{%d}{@{\,}r@{}X@{\,}}|@{}r@{}@{}l@{}' % (
            len(targets)
        )  # in case StrLeft not working: replaced c@{} with l@{ }
        spec = r'@{}c@{}|*{%d}{@{}r@{}X@{}}|@{}r@{}@{}l@{}' % (
            len(targets)
        )  # in case StrLeft not working: replaced c@{} with l@{ }
        extraeol = []

        # Generate header lines
        if with_table_heading:
            header = funInfos[df[1]] if funInfos else 'f%d' % df[1]
            table.append([
                r'\multicolumn{%d}{@{\,}c@{\,}}{{\textbf{%s}}}' %
                (2 * len(targets) + 2, header)
            ])
            extraeol.append('')

        if function_targets_line is True or (function_targets_line and df[1]
                                             in function_targets_line):
            curline = [r'$\Delta f_\mathrm{opt}$']
            for t in targets[0:-1]:
                curline.append(r'\multicolumn{2}{@{\,}X@{\,}}{%s}' %
                               writeFEvals2(t, precision=1, isscientific=True))
            curline.append(
                r'\multicolumn{2}{@{\,}X@{}|}{%s}' %
                writeFEvals2(targets[-1], precision=1, isscientific=True))
            curline.append(r'\multicolumn{2}{@{}l@{}}{\#succ}')
            table.append(curline)
        extraeol.append(r'\hline')
        #        extraeol.append(r'\hline\arrayrulecolor{tableShade}')

        curline = [r'ERT$_{\text{best}}$'
                   ] if with_table_heading else [r'\textbf{f%d}' % df[1]]
        for i in refalgert[0:-1]:
            curline.append(r'\multicolumn{2}{@{\,}X@{\,}}{%s}' %
                           writeFEvalsMaxPrec(float(i), 2))
        curline.append(r'\multicolumn{2}{@{\,}X@{\,}|}{%s}' %
                       writeFEvalsMaxPrec(float(refalgert[-1]), 2))
        curline.append('%d' % refalgnbsucc)
        if refalgnbsucc:
            curline.append('/%d' % refalgnbruns)
        #curline.append(curline[0])
        table.append(curline)
        extraeol.append('')

        #for i, gna in enumerate(zip((1, 2, 3), ('bla', 'blo', 'bli'))):
        #print i, gna, gno
        #set_trace()
        # Format data
        #if df == (5, 17):
        #set_trace()

        header = r'\providecommand{\ntables}{7}'
        for i, alg in enumerate(algnames):
            #algname, entries, irs, line, line2, succ, runs, testres1alg in zip(algnames,
            #data, dispersion, isBoldArray, isItalArray, nbsucc, nbruns, testres):
            commandname = r'\alg%stables' % numtotext(i)
            #            header += r'\providecommand{%s}{{%s}{}}' % (commandname, str_to_latex(strip_pathname(alg)))
            header += r'\providecommand{%s}{\StrLeft{%s}{\ntables}}' % (
                commandname, str_to_latex(strip_pathname(alg)))
            curline = [
                commandname + r'\hspace*{\fill}'
            ]  # each list element becomes a &-separated table entry?

            for j, tmp in enumerate(
                    zip(
                        algerts[i],
                        algdisp[i],  # j is target index
                        isBoldArray[i],
                        algtestres[i])):
                ert, dispersion, isBold, testres = tmp

                alignment = '@{\,}X@{\,}'
                if j == len(algerts[i]) - 1:
                    alignment = '@{\,}X@{\,}|'

                data = ert / refalgert[j]
                # write star for significance against all other algorithms
                str_significance_subsup = ''
                if (len(best_alg_idx) > 0
                        and len(significance_versus_others) > 0
                        and i == best_alg_idx[j]
                        and nbtests * significance_versus_others[j][1] < 0.05):
                    logp = -numpy.ceil(
                        numpy.log10(
                            nbtests * significance_versus_others[j][1]))
                    str_significance_subsup = r"^{%s%s}" % (
                        significance_vs_others_symbol,
                        str(int(logp)) if logp > 1 else '')

                # moved out of the above else: this was a bug!?
                z, p = testres
                if (nbtests * p) < 0.05 and data < 1. and z < 0.:
                    if not numpy.isinf(refalgert[j]):
                        tmpevals = algevals[i][j].copy()
                        tmpevals[numpy.isnan(tmpevals)] = algentries[
                            i].maxevals[numpy.isnan(tmpevals)]
                        bestevals = refalgentry.detEvals([targets[j]])
                        bestevals, bestalgalg = (bestevals[0][0],
                                                 bestevals[1][0])
                        bestevals[numpy.isnan(
                            bestevals)] = refalgentry.maxevals[bestalgalg][
                                numpy.isnan(bestevals)]
                        tmpevals = numpy.array(sorted(
                            tmpevals))[0:min(len(tmpevals), len(bestevals))]
                        bestevals = numpy.array(sorted(
                            bestevals))[0:min(len(tmpevals), len(bestevals))]

                    #The conditions are now that ERT < ERT_best and
                    # all(sorted(FEvals_best) > sorted(FEvals_current)).
                    if numpy.isinf(refalgert[j]) or all(tmpevals < bestevals):
                        nbstars = -numpy.ceil(numpy.log10(nbtests * p))
                        # tmp2[-1] += r'$^{%s}$' % superscript
                        str_significance_subsup += r'_{%s%s}' % (
                            significance_vs_ref_symbol,
                            str(int(nbstars)) if nbstars > 1 else '')
                if str_significance_subsup:
                    str_significance_subsup = '$%s$' % str_significance_subsup

                # format number in variable data
                if numpy.isnan(data):
                    curline.append(r'\multicolumn{2}{%s}{.}' % alignment)
                else:
                    if numpy.isinf(refalgert[j]):
                        curline.append(
                            r'\multicolumn{2}{%s}{\textbf{%s}\mbox{\tiny (%s)}%s}'
                            % (alignment, writeFEvalsMaxPrec(algerts[i][j], 2),
                               writeFEvalsMaxPrec(dispersion, precdispersion),
                               str_significance_subsup))
                        continue

                    tmp = writeFEvalsMaxPrec(data,
                                             precfloat,
                                             maxfloatrepr=maxfloatrepr)
                    if data >= maxfloatrepr or data < 0.01:  # either inf or scientific notation
                        if numpy.isinf(data) and j == len(algerts[i]) - 1:
                            tmp += r'\,\textit{%s}' % writeFEvalsMaxPrec(
                                algfinaldata[i][1],
                                0,
                                maxfloatrepr=maxfloatrepr)
                        else:
                            tmp = writeFEvalsMaxPrec(data,
                                                     precscien,
                                                     maxfloatrepr=data)
                            if isBold:
                                tmp = r'\textbf{%s}' % tmp

                        if not numpy.isnan(dispersion):
                            tmpdisp = dispersion / refalgert[j]
                            if tmpdisp >= maxfloatrepr or tmpdisp < 0.005:  # TODO: hack
                                tmpdisp = writeFEvalsMaxPrec(
                                    tmpdisp,
                                    precdispersion,
                                    maxfloatrepr=tmpdisp)
                            else:
                                tmpdisp = writeFEvalsMaxPrec(
                                    tmpdisp,
                                    precdispersion,
                                    maxfloatrepr=maxfloatrepr)
                            tmp += r'\mbox{\tiny (%s)}' % tmpdisp
                        curline.append(
                            r'\multicolumn{2}{%s}{%s%s}' %
                            (alignment, tmp, str_significance_subsup))
                    else:
                        tmp2 = tmp.split('.', 1)
                        if len(tmp2) < 2:
                            tmp2.append('')
                        else:
                            tmp2[-1] = '.' + tmp2[-1]
                        if isBold:
                            tmp3 = []
                            for k in tmp2:
                                tmp3.append(r'\textbf{%s}' % k)
                            tmp2 = tmp3
                        if not numpy.isnan(dispersion):
                            tmpdisp = dispersion / refalgert[j]
                            if tmpdisp >= maxfloatrepr or tmpdisp < 0.01:
                                tmpdisp = writeFEvalsMaxPrec(
                                    tmpdisp,
                                    precdispersion,
                                    maxfloatrepr=tmpdisp)
                            else:
                                tmpdisp = writeFEvalsMaxPrec(
                                    tmpdisp,
                                    precdispersion,
                                    maxfloatrepr=maxfloatrepr)
                            tmp2[-1] += (r'\mbox{\tiny (%s)}' % (tmpdisp))
                        tmp2[-1] += str_significance_subsup
                        curline.extend(tmp2)

            curline.append('%d' % algnbsucc[i])
            curline.append('/%d' % algnbruns[i])
            table.append(curline)
            extraeol.append('')

        # Write table
        res = tableXLaTeX(table, spec=spec, extraeol=extraeol)
        try:
            filename = os.path.join(
                outputdir, 'pptables_f%03d_%02dD.tex' % (df[1], df[0]))
            f = open(filename, 'w')
            f.write(header + '\n')
            f.write(res)
            if verbose:
                print 'Wrote table in %s' % filename
        except:
            raise
        else:
            f.close()
Exemplo n.º 5
0
def main(dictAlg, sortedAlgs, target=1e-8, outputdir='ppdata', verbose=True):
    """From a DataSetList, returns figures showing the scaling: ERT/dim vs dim.
    
    One function and one target per figure.
    
    sortedAlgs is a list of string-identifies (folder names)
    
    """
    dictFunc = pproc.dictAlgByFun(dictAlg)

    for f in dictFunc:
        filename = os.path.join(outputdir,'ppfigs_f%03d' % (f))
        handles = []
        fix_styles(len(sortedAlgs))  # 
        for i, alg in enumerate(sortedAlgs):
            dictDim = dictFunc[f][alg].dictByDim()

            #Collect data
            dimert = []
            ert = []
            dimnbsucc = []
            ynbsucc = []
            nbsucc = []
            dimmaxevals = []
            maxevals = []
            dimmedian = []
            medianfes = []
            for dim in sorted(dictDim):
                assert len(dictDim[dim]) == 1
                entry = dictDim[dim][0]
                data = generateData(entry, target) # TODO: here we might want a different target for each function
                if 1 < 3 or data[2] == 0: # No success
                    dimmaxevals.append(dim)
                    maxevals.append(float(data[3])/dim)
                if data[2] > 0:
                    dimmedian.append(dim)
                    medianfes.append(data[4]/dim)
                    dimert.append(dim)
                    ert.append(float(data[0])/dim)
                    if data[1] < 1.:
                        dimnbsucc.append(dim)
                        ynbsucc.append(float(data[0])/dim)
                        nbsucc.append('%d' % data[2])

            # Draw lines
            tmp = plt.plot(dimert, ert, **styles[i]) #label=alg, )
            plt.setp(tmp[0], markeredgecolor=plt.getp(tmp[0], 'color'))
            # For legend
            # tmp = plt.plot([], [], label=alg.replace('..' + os.sep, '').strip(os.sep), **styles[i])
            tmp = plt.plot([], [], label=alg.split(os.sep)[-1], **styles[i])
            plt.setp(tmp[0], markersize=12.,
                     markeredgecolor=plt.getp(tmp[0], 'color'))

            if dimmaxevals:
                tmp = plt.plot(dimmaxevals, maxevals, **styles[i])
                plt.setp(tmp[0], markersize=20, #label=alg,
                         markeredgecolor=plt.getp(tmp[0], 'color'),
                         markeredgewidth=1, 
                         markerfacecolor='None', linestyle='None')
                
            handles.append(tmp)
            #tmp2 = plt.plot(dimmedian, medianfes, ls='', marker='+',
            #               markersize=30, markeredgewidth=5,
            #               markeredgecolor=plt.getp(tmp, 'color'))[0]
            #for i, n in enumerate(nbsucc):
            #    plt.text(dimnbsucc[i], numpy.array(ynbsucc[i])*1.85, n,
            #             verticalalignment='bottom',
            #             horizontalalignment='center')

        if not bestalg.bestalgentries2009:
            bestalg.loadBBOB2009()

        bestalgdata = []
        dimbestalg = list(df[0] for df in bestalg.bestalgentries2009 if df[1] == f)
        dimbestalg.sort()
        dimbestalg2 = []
        for d in dimbestalg:
            entry = bestalg.bestalgentries2009[(d, f)]
            tmp = entry.detERT([target])[0]
            if numpy.isfinite(tmp):
                bestalgdata.append(float(tmp)/d)
                dimbestalg2.append(d)

        tmp = plt.plot(dimbestalg2, bestalgdata, color=refcolor, linewidth=10,
                       marker='d', markersize=25, markeredgecolor=refcolor, zorder=-1
                       #label='best 2009', 
                       )
        handles.append(tmp)
        
        if show_significance: # plot significance-stars
            xstar, ystar = [], []
            dims = sorted(pproc.dictAlgByDim(dictFunc[f]))
            for i, dim in enumerate(dims):
                datasets = pproc.dictAlgByDim(dictFunc[f])[dim]
                assert all([len(datasets[ialg]) == 1 for ialg in sortedAlgs if datasets[ialg]])
                dsetlist =  [datasets[ialg][0] for ialg in sortedAlgs if datasets[ialg]]
                if len(dsetlist) > 1:
                    arzp, arialg = toolsstats.significance_all_best_vs_other(dsetlist, [target])
                    if arzp[0][1] * len(dims) < 0.05:
                        ert = dsetlist[arialg[0]].detERT([target])[0]
                        if ert < numpy.inf: 
                            xstar.append(dim)
                            ystar.append(ert/dim)

            plt.plot(xstar, ystar, 'k*', markerfacecolor=None, markeredgewidth=2, markersize=0.5*styles[0]['markersize'])
        if funInfos:
            plt.gca().set_title(funInfos[f])

        isLegend = False
        if legend:
            plotLegend(handles)
        elif 1 < 3:
            if f in (1, 24, 101, 130) and len(sortedAlgs) < 6: # 6 elements at most in the boxed legend
                isLegend = True

        beautify(legend=isLegend, rightlegend=legend)

        plt.text(plt.xlim()[0], plt.ylim()[0], 'ftarget=%.0e' % target)

        saveFigure(filename, verbose=verbose)

        plt.close()

    # generate commands in tex file:
    try:
        abc = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
        alg_definitions = []
        for i in range(len(sortedAlgs)):
            symb = r'{%s%s}' % (color_to_latex(styles[i]['color']),
                                marker_to_latex(styles[i]['marker']))
            alg_definitions.append((', ' if i > 0 else '') + '%s:%s' % (symb, '\\algorithm' + abc[i % len(abc)]))
        filename = os.path.join(outputdir, 'bbob_pproc_commands.tex')
        toolsdivers.prepend_to_file(filename, 
                ['\\providecommand{\\bbobppfigsftarget}{\\ensuremath{10^{%d}}}' 
                        % int(numpy.round(numpy.log10(target))),
                '\\providecommand{\\bbobppfigslegend}[1]{',
                scaling_figure_legend, 
                'Legend: '] + alg_definitions + ['}']
                )
        if verbose:
            print 'Wrote commands and legend to %s' % filename

        # this is obsolete (however check templates)
        filename = os.path.join(outputdir,'ppfigs.tex') 
        f = open(filename, 'w')
        f.write('% Do not modify this file: calls to post-processing software'
                + ' will overwrite any modification.\n')
        f.write('Legend: ')
        
        for i in range(0, len(sortedAlgs)):
            symb = r'{%s%s}' % (color_to_latex(styles[i]['color']),
                                marker_to_latex(styles[i]['marker']))
            f.write((', ' if i > 0 else '') + '%s:%s' % (symb, writeLabels(sortedAlgs[i])))
        f.close()    
        if verbose:
            print '(obsolete) Wrote legend in %s' % filename
    except IOError:
        raise


        handles.append(tmp)

        if funInfos:
            plt.gca().set_title(funInfos[f])

        beautify(rightlegend=legend)

        if legend:
            plotLegend(handles)
        else:
            if f in (1, 24, 101, 130):
                plt.legend()

        saveFigure(filename, figFormat=genericsettings.fig_formats, verbose=verbose)

        plt.close()