Exemplo n.º 1
0
def fast_rnaseq(samples, run_parallel):
    to_index = determine_indexes_to_make(samples)
    run_parallel("run_salmon_index", [to_index])
    samples = run_parallel("run_salmon_reads", samples)
    samples = run_parallel("run_counts_spikein", samples)
    samples = spikein.combine_spikein(samples)
    return samples
Exemplo n.º 2
0
def run_cluster(*data):
    """
    Run seqcluster cluster to detect smallRNA clusters
    """
    sample = data[0][0]
    tools = dd.get_expression_caller(data[0][0])
    work_dir = dd.get_work_dir(sample)
    out_dir = op.join(work_dir, "seqcluster", "cluster")
    out_dir = op.abspath(safe_makedir(out_dir))
    prepare_dir = op.join(work_dir, "seqcluster", "prepare")
    bam_file = data[0][0]["cluster_bam"]
    if "seqcluster" in tools:
        gtf_file = dd.get_transcriptome_gtf(sample) if dd.get_transcriptome_gtf(sample) else dd.get_srna_gtf_file(sample)
        sample["seqcluster"] = _cluster(bam_file, data[0][0]["seqcluster_prepare_ma"],
                                        out_dir, dd.get_ref_file(sample),
                                        gtf_file)
        sample["report"] = _report(sample, dd.get_ref_file(sample))

    if "mirge" in tools:
        sample["mirge"] = mirge.run(data)

    out_mirna = _make_isomir_counts(data, out_dir=op.join(work_dir, "mirbase"))
    if out_mirna:
        sample = dd.set_mirna_counts(sample, out_mirna[0])
        sample = dd.set_isomir_counts(sample, out_mirna[1])

    out_novel = _make_isomir_counts(data, "seqbuster_novel", op.join(work_dir, "mirdeep2"), "_novel")
    if out_novel:
        sample = dd.set_novel_mirna_counts(sample, out_novel[0])
        sample = dd.set_novel_isomir_counts(sample, out_novel[1])
    data[0][0] = sample
    data = spikein.combine_spikein(data)
    return data
Exemplo n.º 3
0
def run_cluster(*data):
    """
    Run seqcluster cluster to detect smallRNA clusters
    """
    sample = data[0][0]
    tools = dd.get_expression_caller(data[0][0])
    work_dir = dd.get_work_dir(sample)
    out_dir = op.join(work_dir, "seqcluster", "cluster")
    out_dir = op.abspath(safe_makedir(out_dir))
    prepare_dir = op.join(work_dir, "seqcluster", "prepare")
    bam_file = data[0][0]["work_bam"]
    if "seqcluster" in tools:
        sample["seqcluster"] = _cluster(bam_file, data[0][0]["seqcluster_prepare_ma"], out_dir, dd.get_ref_file(sample), dd.get_srna_gtf_file(sample))
        sample["report"] = _report(sample, dd.get_ref_file(sample))

    out_mirna = _make_isomir_counts(data, out_dir=op.join(work_dir, "mirbase"))
    if out_mirna:
        sample = dd.set_mirna_counts(sample, out_mirna[0])
        sample = dd.set_isomir_counts(sample, out_mirna[1])

    out_novel = _make_isomir_counts(data, "seqbuster_novel", op.join(work_dir, "mirdeep2"), "_novel")
    if out_novel:
        sample = dd.set_novel_mirna_counts(sample, out_novel[0])
        sample = dd.set_novel_isomir_counts(sample, out_novel[1])
    data[0][0] = sample
    data = spikein.combine_spikein(data)
    return data
Exemplo n.º 4
0
def combine_files(samples):
    """
    after quantitation, combine the counts/FPKM/TPM/etc into a single table with
    all samples
    """
    gtf_file = dd.get_gtf_file(samples[0][0], None)
    dexseq_gff = dd.get_dexseq_gff(samples[0][0])

    # combine featureCount files
    count_files = filter_missing([dd.get_count_file(x[0]) for x in samples])
    combined = count.combine_count_files(count_files, ext=".counts")
    annotated = count.annotate_combined_count_file(combined, gtf_file)

    # combine eXpress files
    express_counts_combined = combine_express(samples, combined)

    # combine Cufflinks files
    fpkm_combined_file = os.path.splitext(combined)[0] + ".fpkm"
    fpkm_files = filter_missing([dd.get_fpkm(x[0]) for x in samples])
    if fpkm_files:
        fpkm_combined = count.combine_count_files(fpkm_files, fpkm_combined_file)
    else:
        fpkm_combined = None
    fpkm_isoform_combined_file = os.path.splitext(combined)[0] + ".isoform.fpkm"
    isoform_files = filter_missing([dd.get_fpkm_isoform(x[0]) for x in samples])
    if isoform_files:
        fpkm_isoform_combined = count.combine_count_files(isoform_files,
                                                          fpkm_isoform_combined_file,
                                                          ".isoform.fpkm")
    else:
        fpkm_isoform_combined = None
    # combine DEXseq files
    dexseq_combined_file = os.path.splitext(combined)[0] + ".dexseq"
    to_combine_dexseq = filter_missing([dd.get_dexseq_counts(data[0]) for data in samples])
    if to_combine_dexseq:
        dexseq_combined = count.combine_count_files(to_combine_dexseq,
                                                    dexseq_combined_file, ".dexseq")
        dexseq.create_dexseq_annotation(dexseq_gff, dexseq_combined)
    else:
        dexseq_combined = None
    samples = spikein.combine_spikein(samples)
    updated_samples = []
    for data in dd.sample_data_iterator(samples):
        data = dd.set_combined_counts(data, combined)
        if annotated:
            data = dd.set_annotated_combined_counts(data, annotated)
        if fpkm_combined:
            data = dd.set_combined_fpkm(data, fpkm_combined)
        if fpkm_isoform_combined:
            data = dd.set_combined_fpkm_isoform(data, fpkm_isoform_combined)
        if express_counts_combined:
            data = dd.set_express_counts(data, express_counts_combined['counts'])
            data = dd.set_express_tpm(data, express_counts_combined['tpm'])
            data = dd.set_express_fpkm(data, express_counts_combined['fpkm'])
            data = dd.set_isoform_to_gene(data, express_counts_combined['isoform_to_gene'])
        if dexseq_combined:
            data = dd.set_dexseq_counts(data, dexseq_combined_file)
        updated_samples.append([data])
    return updated_samples
Exemplo n.º 5
0
def combine_files(samples):
    """
    after quantitation, combine the counts/FPKM/TPM/etc into a single table with
    all samples
    """
    gtf_file = dd.get_gtf_file(samples[0][0], None)
    dexseq_gff = dd.get_dexseq_gff(samples[0][0])

    # combine featureCount files
    count_files = filter_missing([dd.get_count_file(x[0]) for x in samples])
    combined = count.combine_count_files(count_files, ext=".counts")
    annotated = count.annotate_combined_count_file(combined, gtf_file)

    # combine eXpress files
    express_counts_combined = combine_express(samples, combined)

    # combine Cufflinks files
    fpkm_combined_file = os.path.splitext(combined)[0] + ".fpkm"
    fpkm_files = filter_missing([dd.get_fpkm(x[0]) for x in samples])
    if fpkm_files:
        fpkm_combined = count.combine_count_files(fpkm_files, fpkm_combined_file)
    else:
        fpkm_combined = None
    fpkm_isoform_combined_file = os.path.splitext(combined)[0] + ".isoform.fpkm"
    isoform_files = filter_missing([dd.get_fpkm_isoform(x[0]) for x in samples])
    if isoform_files:
        fpkm_isoform_combined = count.combine_count_files(isoform_files,
                                                          fpkm_isoform_combined_file,
                                                          ".isoform.fpkm")
    else:
        fpkm_isoform_combined = None
    # combine DEXseq files
    dexseq_combined_file = os.path.splitext(combined)[0] + ".dexseq"
    to_combine_dexseq = filter_missing([dd.get_dexseq_counts(data[0]) for data in samples])
    if to_combine_dexseq:
        dexseq_combined = count.combine_count_files(to_combine_dexseq,
                                                    dexseq_combined_file, ".dexseq")
        dexseq.create_dexseq_annotation(dexseq_gff, dexseq_combined)
    else:
        dexseq_combined = None
    samples = spikein.combine_spikein(samples)
    updated_samples = []
    for data in dd.sample_data_iterator(samples):
        data = dd.set_combined_counts(data, combined)
        if annotated:
            data = dd.set_annotated_combined_counts(data, annotated)
        if fpkm_combined:
            data = dd.set_combined_fpkm(data, fpkm_combined)
        if fpkm_isoform_combined:
            data = dd.set_combined_fpkm_isoform(data, fpkm_isoform_combined)
        if express_counts_combined:
            data = dd.set_express_counts(data, express_counts_combined['counts'])
            data = dd.set_express_tpm(data, express_counts_combined['tpm'])
            data = dd.set_express_fpkm(data, express_counts_combined['fpkm'])
            data = dd.set_isoform_to_gene(data, express_counts_combined['isoform_to_gene'])
        if dexseq_combined:
            data = dd.set_dexseq_counts(data, dexseq_combined_file)
        updated_samples.append([data])
    return updated_samples
Exemplo n.º 6
0
def combine_files(samples):
    """
    after quantitation, combine the counts/FPKM/TPM/etc into a single table with
    all samples
    """
    data = samples[0][0]
    # prefer the supplied transcriptome gtf file
    gtf_file = dd.get_transcriptome_gtf(data, None)
    if not gtf_file:
        gtf_file = dd.get_gtf_file(data, None)
    dexseq_gff = dd.get_dexseq_gff(data)

    # combine featureCount files
    count_files = filter_missing([dd.get_count_file(x[0]) for x in samples])
    combined = count.combine_count_files(count_files, ext=".counts")
    annotated = count.annotate_combined_count_file(combined, gtf_file)

    # add tx2gene file
    tx2gene_file = os.path.join(dd.get_work_dir(data), "annotation",
                                "tx2gene.csv")
    if gtf_file:
        tx2gene_file = sailfish.create_combined_tx2gene(data)

    # combine eXpress files
    express_counts_combined = combine_express(samples, combined)

    # combine Cufflinks files
    fpkm_files = filter_missing([dd.get_fpkm(x[0]) for x in samples])
    if fpkm_files:
        fpkm_combined_file = os.path.splitext(combined)[0] + ".fpkm"
        fpkm_combined = count.combine_count_files(fpkm_files,
                                                  fpkm_combined_file)
    else:
        fpkm_combined = None
    isoform_files = filter_missing(
        [dd.get_fpkm_isoform(x[0]) for x in samples])
    if isoform_files:
        fpkm_isoform_combined_file = os.path.splitext(
            combined)[0] + ".isoform.fpkm"
        fpkm_isoform_combined = count.combine_count_files(
            isoform_files, fpkm_isoform_combined_file, ".isoform.fpkm")
    else:
        fpkm_isoform_combined = None
    # combine DEXseq files
    to_combine_dexseq = filter_missing(
        [dd.get_dexseq_counts(data[0]) for data in samples])
    if to_combine_dexseq:
        dexseq_combined_file = os.path.splitext(combined)[0] + ".dexseq"
        dexseq_combined = count.combine_count_files(to_combine_dexseq,
                                                    dexseq_combined_file,
                                                    ".dexseq")
        dexseq.create_dexseq_annotation(dexseq_gff, dexseq_combined)
    else:
        dexseq_combined = None
    samples = spikein.combine_spikein(samples)
    updated_samples = []
    for data in dd.sample_data_iterator(samples):
        if combined:
            data = dd.set_combined_counts(data, combined)
        if annotated:
            data = dd.set_annotated_combined_counts(data, annotated)
        if fpkm_combined:
            data = dd.set_combined_fpkm(data, fpkm_combined)
        if fpkm_isoform_combined:
            data = dd.set_combined_fpkm_isoform(data, fpkm_isoform_combined)
        if express_counts_combined:
            data = dd.set_express_counts(data,
                                         express_counts_combined['counts'])
            data = dd.set_express_tpm(data, express_counts_combined['tpm'])
            data = dd.set_express_fpkm(data, express_counts_combined['fpkm'])
            data = dd.set_isoform_to_gene(
                data, express_counts_combined['isoform_to_gene'])
        if dexseq_combined:
            data = dd.set_dexseq_counts(data, dexseq_combined_file)
        if gtf_file:
            data = dd.set_tx2gene(data, tx2gene_file)
        updated_samples.append([data])
    return updated_samples
Exemplo n.º 7
0
def fast_rnaseq(samples, run_parallel):
    samples = run_parallel("run_salmon_index", [samples])
    samples = run_parallel("run_salmon_reads", samples)
    samples = run_parallel("run_counts_spikein", samples)
    samples = spikein.combine_spikein(samples)
    return samples
Exemplo n.º 8
0
def combine_files(samples):
    """
    after quantitation, combine the counts/FPKM/TPM/etc into a single table with
    all samples
    """
    data = samples[0][0]
    # prefer the supplied transcriptome gtf file
    gtf_file = dd.get_transcriptome_gtf(data, None)
    if not gtf_file:
        gtf_file = dd.get_gtf_file(data, None)
    dexseq_gff = dd.get_dexseq_gff(data)

    # combine featureCount files
    count_files = filter_missing([dd.get_count_file(x[0]) for x in samples])
    combined = count.combine_count_files(count_files, ext=".counts")
    annotated = count.annotate_combined_count_file(combined, gtf_file)

    # add tx2gene file
    tx2gene_file = os.path.join(dd.get_work_dir(data), "annotation", "tx2gene.csv")
    if gtf_file:
        tx2gene_file = sailfish.create_combined_tx2gene(data)

    # combine eXpress files
    express_counts_combined = combine_express(samples, combined)

    # combine Cufflinks files
    fpkm_files = filter_missing([dd.get_fpkm(x[0]) for x in samples])
    if fpkm_files and combined:
        fpkm_combined_file = os.path.splitext(combined)[0] + ".fpkm"
        fpkm_combined = count.combine_count_files(fpkm_files, fpkm_combined_file)
    else:
        fpkm_combined = None
    isoform_files = filter_missing([dd.get_fpkm_isoform(x[0]) for x in samples])
    if isoform_files and combined:
        fpkm_isoform_combined_file = os.path.splitext(combined)[0] + ".isoform.fpkm"
        fpkm_isoform_combined = count.combine_count_files(isoform_files,
                                                          fpkm_isoform_combined_file,
                                                          ".isoform.fpkm")
    else:
        fpkm_isoform_combined = None
    # combine DEXseq files
    to_combine_dexseq = filter_missing([dd.get_dexseq_counts(data[0]) for data
                                        in samples])
    if to_combine_dexseq and combined:
        dexseq_combined_file = os.path.splitext(combined)[0] + ".dexseq"
        dexseq_combined = count.combine_count_files(to_combine_dexseq,
                                                    dexseq_combined_file, ".dexseq")
        if dexseq_combined:
            dexseq.create_dexseq_annotation(dexseq_gff, dexseq_combined)
    else:
        dexseq_combined = None
    samples = spikein.combine_spikein(samples)
    updated_samples = []
    for data in dd.sample_data_iterator(samples):
        if combined:
            data = dd.set_combined_counts(data, combined)
        if annotated:
            data = dd.set_annotated_combined_counts(data, annotated)
        if fpkm_combined:
            data = dd.set_combined_fpkm(data, fpkm_combined)
        if fpkm_isoform_combined:
            data = dd.set_combined_fpkm_isoform(data, fpkm_isoform_combined)
        if express_counts_combined:
            data = dd.set_express_counts(data, express_counts_combined['counts'])
            data = dd.set_express_tpm(data, express_counts_combined['tpm'])
            data = dd.set_express_fpkm(data, express_counts_combined['fpkm'])
            data = dd.set_isoform_to_gene(data, express_counts_combined['isoform_to_gene'])
        if dexseq_combined:
            data = dd.set_dexseq_counts(data, dexseq_combined_file)
        if gtf_file:
            data = dd.set_tx2gene(data, tx2gene_file)
        updated_samples.append([data])
    return updated_samples
Exemplo n.º 9
0
def fast_rnaseq(samples, run_parallel):
    samples = run_parallel("run_salmon_index", [samples])
    samples = run_parallel("run_salmon_reads", samples)
    samples = run_parallel("run_counts_spikein", samples)
    samples = spikein.combine_spikein(samples)
    return samples