def compose_abs_transition_bdd(): global cached_abs_transition, procd_blocks # check cache if cached_abs_transition is None: log.DBG_MSG("Rebuilding abstract transition relation") for b in preds.abs_blocks: procd_blocks[b] = False c = bdd.true() else: c = cached_abs_transition latches = [x.lit for x in iterate_latches_and_error()] latches_bdd = bdd.get_cube(get_all_latches_as_bdds()) latch_funs = [get_bdd_for_aig_lit(x.next) for x in iterate_latches_and_error()] for b in preds.abs_blocks: if b not in procd_blocks or not procd_blocks[b]: procd_blocks[b] = True temp = bdd.make_eq(bdd.BDD(get_primed_variable(b)), preds.block_to_bdd[b]) c &= temp.compose(latches, latch_funs) # cache c cached_abs_transition = c return c.and_abstract(compose_abs_eq_bdd(), latches_bdd)
def extract_output_funcs(strategy, care_set=None): """ Calculate BDDs for output functions given non-deterministic winning strategy. """ if care_set is None: care_set = bdd.true() output_models = dict() all_outputs = get_controllable_inputs_bdds() for c in get_controllable_inputs_bdds(): others = set(set(all_outputs) - set([c])) if others: others_cube = bdd.get_cube(others) c_arena = strategy.exist_abstract(others_cube) else: c_arena = strategy # pairs (x,u) in which c can be true can_be_true = c_arena.cofactor(c) # pairs (x,u) in which c can be false can_be_false = c_arena.cofactor(~c) must_be_true = (~can_be_false) & can_be_true must_be_false = (~can_be_true) & can_be_false local_care_set = care_set & (must_be_true | must_be_false) # Restrict operation: # on care_set: must_be_true.restrict(care_set) <-> must_be_true c_model = min([must_be_true.safe_restrict(local_care_set), (~must_be_false).safe_restrict(local_care_set)], key=bdd.dag_size) output_models[c] = c_model log.DBG_MSG("Size of function for " + str(c.get_index()) + " = " + str(c_model.dag_size())) strategy &= bdd.make_eq(c, c_model) return output_models
def over_post_bdd_abs(src_states_bdd, env_strat=None): # make sure the block_funs are current update_block_funs() # take the step forward and get rid of latches conc_src = gamma(src_states_bdd) if env_strat is not None: conc_strat = gamma(env_strat) else: conc_strat = bdd.true() # to do this, we use an over-simplified transition relation, EXu,Xc simple_trans = bdd.true() for b in preds.abs_blocks: trans_b = bdd.make_eq(bdd.BDD(b), block_funs[b]) simple_trans &= trans_b.exist_abstract( bdd.get_cube(get_controllable_inputs_bdds())) simple_trans &= conc_strat & conc_src return simple_trans.exist_abstract( bdd.get_cube(get_all_latches_as_bdds() + get_uncontrollable_inputs_bdds()))
def single_post_bdd(src_states_bdd, sys_strat=None): """ Over-approximated version of concrete post which can be done even without the transition relation """ strat = bdd.true() if sys_strat is not None: strat &= sys_strat # to do this, we use an over-simplified transition relation, EXu,Xc b = bdd.true() for x in iterate_latches_and_error(): temp = bdd.make_eq(bdd.BDD(get_primed_variable(x.lit)), get_bdd_for_aig_lit(x.next)) b &= temp.and_abstract(strat, bdd.get_cube(get_controllable_inputs_bdds())) if restrict_like_crazy: b = b.restrict(src_states_bdd) b &= src_states_bdd b = b.exist_abstract( bdd.get_cube(get_all_latches_as_bdds() + get_uncontrollable_inputs_bdds())) return unprime_latches_in_bdd(b)
def to_bdd(self): b = bdd.true() for c in self.clauses: nu_clause = bdd.false() for l in c: nu_var = bdd.BDD(abs(l)) if l < 0: nu_var = ~nu_var nu_clause |= nu_var b &= nu_clause return b
def compose_transition_bdd(): global cached_transition # check cache if cached_transition: return cached_transition b = bdd.true() for x in iterate_latches_and_error(): b &= bdd.make_eq(bdd.BDD(get_primed_variable(x.lit)), get_bdd_for_aig_lit(x.next)) cached_transition = b log.BDD_DMP(b, "Composed and cached the concrete transition relation") return b
def single_pre_bdd(dst_states_bdd, strat=None): if strat is None: strat = bdd.true() latches = [x.lit for x in iterate_latches_and_error()] latch_funs = [get_bdd_for_aig_lit(x.next) for x in iterate_latches_and_error()] if restrict_like_crazy: latch_funs = [x.restrict(~dst_states_bdd) for x in latch_funs] # take a transition step backwards p_bdd = dst_states_bdd.compose(latches, latch_funs) # use the given strategy p_bdd &= strat p_bdd = p_bdd.exist_abstract( bdd.get_cube(get_uncontrollable_inputs_bdds() + get_controllable_inputs_bdds())) return p_bdd
def compose_abs_eq_bdd(): global cached_abs_eq, abs_eq_procd_blocks # check cache if cached_abs_eq is None: log.DBG_MSG("Rebuilding abs_eq") for b in preds.abs_blocks: abs_eq_procd_blocks[b] = False c = bdd.true() else: c = cached_abs_eq for b in preds.abs_blocks: if b not in procd_blocks or not procd_blocks[b]: c &= bdd.make_eq(bdd.BDD(b), preds.block_to_bdd[b]) # cache c cached_abs_eq = c return c
def walk(a_bdd): global bdd_gate_cache """ Walk given BDD node (recursively). If given input BDD requires intermediate AND gates for its representation, the function adds them. Literal representing given input BDD is `not` added to the spec. """ if a_bdd in bdd_gate_cache: return bdd_gate_cache[a_bdd] if a_bdd.is_constant(): res = int(a_bdd == bdd.true()) # in aiger 0/1 = False/True return res # get an index of variable, # all variables used in bdds also introduced in aiger, # except fake error latch literal, # but fake error latch will not be used in output functions (at least we # don't need this..) a_lit = a_bdd.get_index() assert (a_lit != error_fake_latch.lit), ("using error latch in the " + "definition of output " + "function is not allowed") t_bdd = a_bdd.then_child() e_bdd = a_bdd.else_child() t_lit = walk(t_bdd) e_lit = walk(e_bdd) # ite(a_bdd, then_bdd, else_bdd) # = a*then + !a*else # = !(!(a*then) * !(!a*else)) # -> in general case we need 3 more ANDs a_t_lit = aig.get_optimized_and_lit(a_lit, t_lit) na_e_lit = aig.get_optimized_and_lit(aig.negate_lit(a_lit), e_lit) n_a_t_lit = aig.negate_lit(a_t_lit) n_na_e_lit = aig.negate_lit(na_e_lit) ite_lit = aig.get_optimized_and_lit(n_a_t_lit, n_na_e_lit) res = aig.negate_lit(ite_lit) if a_bdd.is_complement(): res = aig.negate_lit(res) # cache result bdd_gate_cache[a_bdd] = res return res
def update_block_funs(): global cached_block_funs, block_funs latches = [x.lit for x in iterate_latches_and_error()] latch_funs = [get_bdd_for_aig_lit(x.next) for x in iterate_latches_and_error()] # check cache if cached_block_funs is None: log.DBG_MSG("Rebuilding block_funs") block_funs = dict() for b in preds.abs_blocks: block_funs[b] = gamma(preds.block_to_bdd[b]).compose(latches, latch_funs) else: for b in preds.abs_blocks: if b not in block_funs: block_funs[b] = gamma(preds.block_to_bdd[b]) block_funs[b] = block_funs[b].compose(latches, latch_funs) # set cache cached_block_funs = bdd.true()
def single_pre_env_bdd(dst_states_bdd, env_strat=None, get_strat=False): if env_strat is not None: strat = env_strat else: strat = bdd.true() latches = [x.lit for x in iterate_latches_and_error()] latch_funs = [get_bdd_for_aig_lit(x.next) for x in iterate_latches_and_error()] if restrict_like_crazy: latch_funs = [x.restrict(~dst_states_bdd) for x in latch_funs] # take a transition step backwards p_bdd = dst_states_bdd.compose(latches, latch_funs) # use the given strategy p_bdd &= strat # there is an uncontrollable action such that for all contro... temp_bdd = p_bdd.univ_abstract( bdd.get_cube(get_controllable_inputs_bdds())) p_bdd = temp_bdd.exist_abstract( bdd.get_cube(get_uncontrollable_inputs_bdds())) if get_strat: return temp_bdd else: return p_bdd
def abs_synthesis(compute_win_region=False): global use_abs # declare winner def declare_winner(controllable, conc_lose): log.LOG_MSG("Nr. of predicates: " + str(len(preds.abs_blocks))) log.LOG_ACCUM() if controllable: log.LOG_MSG("The spec is realizable.") if compute_win_region: # make sure we reached the fixpoint log.DBG_MSG("Get winning region") return (~fp(bdd.BDD(error_fake_latch.lit) | conc_lose, fun=lambda x: x | pre_env_bdd(x)), []) else: return (~conc_lose, []) log.LOG_MSG("The spec is unrealizable.") return (None, []) # make sure that we have something to abstract if aig.num_latches() == 0: log.WRN_MSG("No latches in spec. Defaulting to regular synthesis.") use_abs = False return synthesize() # update loss steps local_loss_steps = (aig.num_latches() + 1) // loss_steps log.DBG_MSG("Loss steps = " + str(local_loss_steps)) # registered quants steps = 0 log.register_sum("ref_cnt", "Nr. of refinements: ") log.register_sum("abs_time", "Time spent abstracting: ") log.register_sum("uabs_time", "Time spent computing under-app of fp: ") log.register_sum("oabs_time", "Time spent exhausting info of over-app: ") log.register_average("unsafe_bdd_size", "Average unsafe iterate bdd size: ") # create the abstract game initial_abstraction() error_bdd = alpha_under(bdd.BDD(error_fake_latch.lit)) # add some latches if ini_latch: make_vis = (aig.num_latches() + 1) // ini_latch log.DBG_MSG("Making visible " + str(make_vis) + " latches") for i in range(make_vis): preds.loc_red() # first over-approx of the reachable region reachable_bdd = bdd.true() # The REAL algo while True: log.start_clock() if use_trans: transition_bdd = compose_abs_transition_bdd() log.BDD_DMP(transition_bdd, "transition relation") init_state_bdd = compose_abs_init_state_bdd() log.BDD_DMP(init_state_bdd, "initial state set") log.BDD_DMP(error_bdd, "unsafe state set") log.stop_clock("abs_time") # STEP 1: check if under-approx is losing log.DBG_MSG("Computing over approx of FP") log.start_clock() under_fp = fp(error_bdd, fun=lambda x: (reachable_bdd & (x | pre_env_bdd_uabs(x)))) log.stop_clock("uabs_time") if (init_state_bdd & under_fp) != bdd.false(): return declare_winner(False) # STEP 2: exhaust information from the abstract game, i.e. # update the reachability information we have log.start_clock() prev_reach = bdd.false() reach = reachable_bdd while prev_reach != reach: prev_reach = reach # STEP 2.1: check if the over-approx is winning log.DBG_MSG("Computing over approx of FP") over_fp = fp(under_fp, fun=lambda x: (reach & (x | pre_env_bdd_abs(x)))) if (over_fp & init_state_bdd) == bdd.false(): log.DBG_MSG("FP of the over-approx losing region not initial") return declare_winner(True, gamma(under_fp)) # if there is no early exit we compute a strategy for Env env_strats = pre_env_bdd_abs(over_fp, get_strat=True) log.DBG_MSG("Computing over approx of Reach") reach = fp(init_state_bdd, fun=lambda x: (reach & (x | post_bdd_abs(x, env_strats)))) log.stop_clock("oabs_time") # STEP 3: refine or declare controllable log.DBG_MSG("Concretizing the strategy of Env") conc_env_strats = gamma(env_strats) conc_reach = gamma(reach) conc_under_fp = gamma(under_fp) log.DBG_MSG("Taking one step of UPRE in the concrete game") conc_step = single_pre_env_bdd(conc_under_fp, env_strat=conc_env_strats) conc_step &= conc_reach if bdd.make_impl(conc_step, conc_under_fp) == bdd.true(): log.DBG_MSG("The concrete step revealed we are at the FP") return declare_winner(True, conc_under_fp) else: # drop latches every number of steps reset = False if (steps != 0 and steps % local_loss_steps == 0): log.DBG_MSG("Dropping all visible latches!") reset = preds.drop_latches() # add new predicates and reset caches if necessary nu_losing_region = conc_step | conc_under_fp reset |= preds.add_fixed_pred("reach", conc_reach) reset |= preds.add_fixed_pred("unsafe", nu_losing_region) # find interesting set of latches log.DBG_MSG("Localization reduction step.") reset |= preds.loc_red(not_imply=nu_losing_region) log.DBG_MSG("# of predicates = " + str(len(preds.abs_blocks))) if reset: reset_caches() # update error bdd log.push_accumulated("unsafe_bdd_size", nu_losing_region.dag_size()) error_bdd = alpha_under(nu_losing_region) # update reachable area reachable_bdd = alpha_over(conc_reach) steps += 1 log.push_accumulated("ref_cnt", 1)
def compose_init_state_bdd(): b = bdd.true() for x in iterate_latches_and_error(): b &= ~bdd.BDD(x.lit) return b
def main(aiger_file_name, out_file): aig.parse_into_spec(aiger_file_name) log.DBG_MSG("AIG spec file parsed") log.LOG_MSG("Nr. of latches: " + str(aig.num_latches())) log.DBG_MSG("Latches: " + str([x.lit for x in iterate_latches_and_error()])) log.DBG_MSG("U. Inputs: " + str([x.lit for x in aig.iterate_uncontrollable_inputs()])) log.DBG_MSG("C. Inputs: " + str([x.lit for x in aig.iterate_controllable_inputs()])) # realizability and preliminary synthesis if use_abs: (win_region, reach_over) = abs_synthesis(out_file is not None) else: (win_region, reach_over) = synthesize() if out_file and win_region: log.LOG_MSG("Win region bdd node count = " + str(win_region.dag_size())) strategy = single_pre_sys_bdd(win_region, get_strat=True) log.LOG_MSG("Strategy bdd node count = " + str(strategy.dag_size())) func_by_var = extract_output_funcs(strategy, win_region) # attempt to minimize the winning region for r in reach_over: for (c_bdd, func_bdd) in func_by_var.items(): func_by_var[c_bdd] = func_bdd.safe_restrict(r) log.DBG_MSG("Min'd version size " + str(func_by_var[c_bdd].dag_size())) # attempt to minimize the winning region if min_win: bdd.disable_reorder() strategy = bdd.true() for (c_bdd, func_bdd) in func_by_var.items(): strategy &= bdd.make_eq(c_bdd, func_bdd) win_region = fp(compose_init_state_bdd(), fun=lambda x: x | post_bdd(x, strategy)) for (c_bdd, func_bdd) in func_by_var.items(): func_by_var[c_bdd] = func_bdd.safe_restrict(win_region) log.DBG_MSG("Min'd version size " + str(func_by_var[c_bdd].dag_size())) # model check? if model_check: strategy = bdd.true() for (c_bdd, func_bdd) in func_by_var.items(): strategy &= bdd.make_eq(c_bdd, func_bdd) assert (fp(bdd.BDD(error_fake_latch.lit), fun=lambda x: x | single_pre_bdd(x, strategy)) & compose_init_state_bdd()) == bdd.false() # print out the strategy total_dag = 0 for (c_bdd, func_bdd) in func_by_var.items(): total_dag += func_bdd.dag_size() model_to_aiger(c_bdd, func_bdd) log.LOG_MSG("Sum of func dag sizes = " + str(total_dag)) log.LOG_MSG("# of added gates = " + str(len(bdd_gate_cache))) aig.write_spec(out_file) return True elif win_region: return True else: return False