Exemplo n.º 1
0
 def get_error(self, data, model):
     nr1 = beads.transform(model, self.r0[data])
     err_per_point = numpy.array([
         numpy.linalg.norm(self.r1[data[i]] - nr1[i])
         for i in range(len(data))
     ])
     return err_per_point
Exemplo n.º 2
0
def calculateFinalWeightMatrices(params,
                                 stacks,
                                 axisOfRotation=1,
                                 sigmoidHalfWidthRelativeToImageSize=0.05,
                                 adaptiveCenterFile=None,
                                 sampleIntensityThreshold=15):
    # old function arguments:
    # params,size,spacings,isotropicSpacing,outShape=None,outSpacing=None,sigmoidHalfWidthRelativeToImageSize=0.05)
    """

    :rtype : object
    - expects params and size, axisOfRotation, adaptiveCenterFile(sitk) relative to axes definition: (x,y,z)
    - rotation around x
    """

    #origins = infoDict['origins']
    #positions = infoDict['positions']
    #spacing = infoDict['spacing']
    #centerOfRotation = infoDict['centerOfRotation']
    #axisOfRotation = infoDict['axisOfRotation']
    #sizes = infoDict['sizes']

    params = n.array(params)
    finalSize = n.ceil(stacks[0].GetSize()).astype(n.int64)
    # finalSpacing = n.array(stacks[0].GetSpacing()).astype(n.float64)

    # tmpMatrix = n.zeros((4,4)).astype(n.float)
    # tmpMatrix[:3,:3] = params[1][:9].reshape((3,3))
    # direction = transformations.rotation_from_matrix(tmpMatrix)[1]
    axisOfRotation = n.argmax(n.abs(params[1][[0, 4, 8]]))
    print 'determining axis of rotation from parameters... %s' % axisOfRotation

    axes = range(3)
    axes.remove(axisOfRotation)
    firstAxis = axes[0]
    lastAxis = axes[1]

    def calcAngles(Y, Z):
        norm = n.sqrt(n.power(Y, 2) + n.power(Z, 2))
        norm[norm == 0] = 0.001
        angles = []
        angles.append(n.arccos(Y / norm))
        angles.append(2 * n.pi - n.arccos(Y / norm))
        #angles.append(n.pi-n.arccos(-Y/norm))
        #angles.append(n.pi+n.arccos(-Y/norm))
        finalAngles = n.zeros(Y.shape, dtype=n.float64)
        #criteria = [(Y>=0)*(Z>=0),(Y>=0)*(Z<0),(Y<0)*(Z>=0),(Y<0)*(Z<0)]
        criteria = [(Z >= 0), (Z < 0)]
        for icrit, crit in enumerate(criteria):
            finalAngles[crit] = angles[icrit][crit]
        return finalAngles

    if adaptiveCenterFile == None:
        centers = n.array([[finalSize[lastAxis], finalSize[firstAxis]]]) / 2.
    else:
        print 'calculating stack centers for fusion weights (assuming sample intensity of >%s)' % sampleIntensityThreshold
        #adaptiveCenterFileSpacing = n.array(adaptiveCenterFile.GetSpacing())
        centers = []
        Z, Y = n.mgrid[0:finalSize[lastAxis], 0:finalSize[firstAxis]]
        Z, Y = sitk.GetImageFromArray(Y.astype(
            n.uint16)), sitk.GetImageFromArray(Z.astype(n.uint16))
        for x in range(adaptiveCenterFile.GetSize()[axisOfRotation]):
            if axisOfRotation == 0:
                xImage = adaptiveCenterFile[x]
            elif axisOfRotation == 1:
                xImage = adaptiveCenterFile[:, x]
            elif axisOfRotation == 2:
                xImage = adaptiveCenterFile[:, :, x]
            #pdb.set_trace()
            Z.SetOrigin(xImage.GetOrigin())
            Z.SetSpacing(xImage.GetSpacing())
            Y.SetOrigin(xImage.GetOrigin())
            Y.SetSpacing(xImage.GetSpacing())
            xImage = sitk.Cast(xImage > sampleIntensityThreshold, 7
                               ) * 1000 + 0.01  #careful, could create overflow
            totalIntensity = sitk.SumProjection(sitk.SumProjection(xImage, 0),
                                                1).GetPixel(0, 0)
            z = sitk.SumProjection(
                sitk.SumProjection(sitk.Cast(Z, 7) * xImage, 0), 1).GetPixel(
                    0, 0) / totalIntensity
            y = sitk.SumProjection(
                sitk.SumProjection(sitk.Cast(Y, 7) * xImage, 0), 1).GetPixel(
                    0, 0) / totalIntensity
            # totalIntensity = sitk.SumProjection(sitk.SumProjection(sitk.GetImageFromArray(n.ones(xImage.GetSize())),0),1).GetPixel(0,0)
            #pdb.set_trace()
            # z = sitk.SumProjection(sitk.SumProjection(Z,0),1).GetPixel(0,0)/totalIntensity
            # y = sitk.SumProjection(sitk.SumProjection(Y,0),1).GetPixel(0,0)/totalIntensity
            # tmp = sitk.GetArrayFromImage(xImage)
            # tmp[int(y),int(z)] = 2000
            # plt.imshow(tmp)
            # plt.colorbar()
            # plt.show()
            center = [y, z]
            centers.append(center)

    # smoothen center line
    centers = n.array(centers)
    #centers = n.array([ndimage.gaussian_filter(centers[:,i],finalSize[[firstAxis,lastAxis][i]]/30.) for i in range(2)])
    #centers = centers.swapaxes(0,1)

    # get angles
    refCenter = n.array(stacks[0].TransformIndexToPhysicalPoint(
        [int(i) for i in n.array(stacks[0].GetSize()) / 2.]))
    #origCenter = n.array([refCenter[i] for i in [lastAxis,firstAxis]])

    bestAngles = []
    refPoints = []
    print 'refCenter %s' % refCenter
    refPoints.append(refCenter)
    for iparam, param in enumerate(params):
        # point2 is refCenter in rotated view
        point2 = beads.transform(param, [refCenter])[0]
        # shift point2 in z (positive here since later compared to positive again)
        point2[lastAxis] += 100
        # transform back to reference view
        refPoint = beads.backTransform(param, [point2])[0]
        refPoints.append(refPoint)
        # calc direction vector
        refVector = refPoint - refCenter
        refVector = n.array([refVector[i] for i in [lastAxis, firstAxis]])
        refVector = refVector / n.linalg.norm(refVector)
        # calc angle with respect to [1,1]
        angle = calcAngles(n.array([refVector[0]]), n.array([refVector[1]]))
        bestAngles.append(angle)

    #pdb.set_trace()
    refPoints = n.array(refPoints)
    # plt.plot(refPoints[:,0],refPoints[:,2],'o')
    # plt.show()

    zCenter = finalSize[[lastAxis, firstAxis]] / 2.
    lower = n.array([0, 0])
    upper = finalSize[[lastAxis, firstAxis]]
    templateLower = lower - n.max(centers, 0) + zCenter
    templateUpper = upper - n.min(centers, 0) + zCenter
    print templateLower, templateUpper
    deltaplus = n.ceil(templateUpper - zCenter)
    deltaminus = n.ceil(zCenter - templateLower)
    templateSize = deltaminus + deltaplus

    Y, Z = n.mgrid[0:templateSize[0], 0:templateSize[1]]
    Y = Y - deltaminus[0]
    Z = Z - deltaminus[1]
    norm = n.sqrt(n.power(Y, 2) + n.power(Z, 2))

    sigmoidHalfWidthInPixels = n.mean(
        finalSize[[firstAxis, lastAxis]]) * sigmoidHalfWidthRelativeToImageSize
    halfY = 0.9  # half width is defined as the x value corresponding to y=halfY
    norm[norm == 0] = 0.0001
    sigmoidA = n.log(1. / halfY - 1.) / n.arctan(
        sigmoidHalfWidthInPixels / norm)

    finalAngles = calcAngles(Y, Z)
    # plt.imshow(finalAngles)
    # plt.title('finalAngles')
    # plt.colorbar()
    # plt.show()

    # add cameras here
    viewAngles = []
    for i in range(len(bestAngles)):
        viewAngle = []
        viewAngle.append(bestAngles[i])
        viewAngle.append((bestAngles[i] + n.pi) % (2 * n.pi))
        viewAngles.append(viewAngle)

    print viewAngles
    # calculate difference to ref angles
    weights = []
    for iview, viewAngle in enumerate(viewAngles):
        tmp = n.min([
            n.min([
                n.abs(finalAngles - i),
                n.abs(2 * n.pi - n.abs(finalAngles - i))
            ], 0) for i in viewAngle
        ], 0)
        weights.append(tmp.astype(n.float32))
        # plt.imshow(weights[iview])
        # plt.title('weights1 %s' %iview)
        # plt.colorbar()
        # plt.show()
        # #tifffile.imsave('/home/malbert/delme/test%s.tif' %(iview),weights[iview])

    weightsDiff = []
    for iview, view in enumerate(viewAngles):
        weightsDiff.append(
            n.min([
                -weights[iview] + weights[i]
                for i in n.delete(range(len(viewAngles)), iview, 0)
            ], 0))
        #tifffile.imsave('/home/malbert/delme/test%s.tif' %(iview),weightsDiff[iview])
        #sitk.WriteImage(sitk.Cast(sitk.GetImageFromArray(weightsDiff[iview]),3),'/home/malbert/delme/test%s.tif' %(iview))
        # plt.imshow(weightsDiff[iview])
        # plt.title('weightsDiff1 %s' %iview)
        # plt.colorbar()
        # plt.show()
    for iview, view in enumerate(viewAngles):
        weightsDiff[iview] = (1 / (1 + n.exp(sigmoidA * (weightsDiff[iview]))))
        # plt.imshow(weightsDiff[iview])
        # plt.title('weightsDiff2 %s' %iview)
        # plt.colorbar()
        # plt.show()
        #pdb.set_trace()
        #sitk.WriteImage(sitk.Cast(sitk.GetImageFromArray(weightsDiff[iview]*100),3),'/home/malbert/delme/test%s.tif' %(iview))

    weights = []
    weightsDiffSum = n.sum(weightsDiff, 0)
    for iview, view in enumerate(viewAngles):
        weights.append(weightsDiff[iview] / weightsDiffSum)
        #sitk.WriteImage(sitk.Cast(sitk.GetImageFromArray(weights[iview]*1000),3),'/home/malbert/delme/test%s.tif' %(iview))

    #sitk.WriteImage(sitk.Cast(finalWeights[iview]*1000,3),'/home/malbert/delme/test0.tif')

    xWeights = []
    for icenter, center in enumerate(centers):
        xWeight = []
        for iview, view in enumerate(viewAngles):
            # pdb.set_trace()
            # plt.imshow(weights[iview])
            # plt.title('test')
            # plt.colorbar()
            # plt.show()
            xW = sitk.GetImageFromArray(weights[iview])
            #xW.SetOrigin((templateLower[0], templateLower[1]))
            xW.SetOrigin([0, 0])
            tmpTransform = sitk.Transform(2, 1)
            tmpSize = finalSize[[lastAxis, firstAxis]].astype(n.int64)
            tmpSize = [int(i) for i in tmpSize[::-1]]
            tmpOrigin = n.array([-center[i] + deltaminus[i] for i in [1, 0]])
            #pdb.set_trace()
            tmpTransform.SetParameters(tmpOrigin)
            #pdb.set_trace()
            xW = sitk.Resample(
                xW,
                tmpSize,
                tmpTransform,
                sitk.sitkLinear,
                #tmpOrigin
            )
            #pdb.set_trace()
            xW = sitk.GetArrayFromImage(xW)
            xWeight.append(xW)
            # plt.imshow(xW)
            # plt.title('weights %s %s' %(iview,center))
            # plt.colorbar()
            # plt.show()

        xWeights.append(xWeight)

    finalWeights = []
    for i in range(len(params)):
        #finalWeights.append(sitk.GetImageFromArray(xWeights[0][i]))
        if adaptiveCenterFile is None:
            tmp = n.array([xWeights[0][i]] * finalSize[axisOfRotation])
        else:
            tmp = n.array(
                [xWeights[j][i] for j in range(finalSize[axisOfRotation])])
        if axisOfRotation == 0: numpyAxisOfRotation = 2
        elif axisOfRotation == 1: numpyAxisOfRotation = 1
        elif axisOfRotation == 2: numpyAxisOfRotation = 0
        tmp = tmp.swapaxes(0, numpyAxisOfRotation)
        if numpyAxisOfRotation == 2:
            otherAxes = range(3)
            otherAxes.remove(numpyAxisOfRotation)
            tmp = tmp.swapaxes(otherAxes[0], otherAxes[1])
        #tmp = tmp.swapaxes(0, 1).swapaxes(1, 2).astype(n.float32)
        tmp = tmp.astype(n.float32)
        finalWeights.append(sitk.GetImageFromArray(tmp))
    #sitk.WriteImage(sitk.Cast(finalWeights[iview]*1000,3),'/home/malbert/delme/test.tif')

    return finalWeights
Exemplo n.º 3
0
 def get_error( self, data, model):
     nr1 = beads.transform(model,self.r0[data])
     err_per_point = numpy.array([numpy.linalg.norm(self.r1[data[i]]-nr1[i]) for i in range(len(data))])
     return err_per_point
Exemplo n.º 4
0
def calculateFinalWeightMatrices(params,
                                 stacks,
                                 axisOfRotation=1,
                                 sigmoidHalfWidthRelativeToImageSize=0.05,
                                 adaptiveCenterFile=None,
                                 sampleIntensityThreshold=15
                                 ):
    # old function arguments:
    # params,size,spacings,isotropicSpacing,outShape=None,outSpacing=None,sigmoidHalfWidthRelativeToImageSize=0.05)
    """

    :rtype : object
    - expects params and size, axisOfRotation, adaptiveCenterFile(sitk) relative to axes definition: (x,y,z)
    - rotation around x
    """

    #origins = infoDict['origins']
    #positions = infoDict['positions']
    #spacing = infoDict['spacing']
    #centerOfRotation = infoDict['centerOfRotation']
    #axisOfRotation = infoDict['axisOfRotation']
    #sizes = infoDict['sizes']

    params = n.array(params)
    finalSize = n.ceil(stacks[0].GetSize()).astype(n.int64)
    # finalSpacing = n.array(stacks[0].GetSpacing()).astype(n.float64)

    # tmpMatrix = n.zeros((4,4)).astype(n.float)
    # tmpMatrix[:3,:3] = params[1][:9].reshape((3,3))
    # direction = transformations.rotation_from_matrix(tmpMatrix)[1]
    axisOfRotation = n.argmax(n.abs(params[1][[0,4,8]]))
    print 'determining axis of rotation from parameters... %s' %axisOfRotation


    axes = range(3)
    axes.remove(axisOfRotation)
    firstAxis = axes[0]
    lastAxis = axes[1]

    def calcAngles(Y,Z):
        norm = n.sqrt(n.power(Y,2)+n.power(Z,2))
        norm[norm==0] = 0.001
        angles = []
        angles.append(n.arccos(Y/norm))
        angles.append(2*n.pi-n.arccos(Y/norm))
        #angles.append(n.pi-n.arccos(-Y/norm))
        #angles.append(n.pi+n.arccos(-Y/norm))
        finalAngles = n.zeros(Y.shape,dtype=n.float64)
        #criteria = [(Y>=0)*(Z>=0),(Y>=0)*(Z<0),(Y<0)*(Z>=0),(Y<0)*(Z<0)]
        criteria = [(Z>=0),(Z<0)]
        for icrit,crit in enumerate(criteria):
            finalAngles[crit] = angles[icrit][crit]
        return finalAngles

    if adaptiveCenterFile == None:
        centers = n.array([[finalSize[lastAxis],finalSize[firstAxis]]])/2.
    else:
        print 'calculating stack centers for fusion weights (assuming sample intensity of >%s)' %sampleIntensityThreshold
        #adaptiveCenterFileSpacing = n.array(adaptiveCenterFile.GetSpacing())
        centers = []
        Z, Y = n.mgrid[0:finalSize[lastAxis], 0:finalSize[firstAxis]]
        Z, Y = sitk.GetImageFromArray(Y.astype(n.uint16)), sitk.GetImageFromArray(Z.astype(n.uint16))
        for x in range(adaptiveCenterFile.GetSize()[axisOfRotation]):
            if axisOfRotation == 0:
                xImage = adaptiveCenterFile[x]
            elif axisOfRotation == 1:
                xImage = adaptiveCenterFile[:,x]
            elif axisOfRotation == 2:
                xImage = adaptiveCenterFile[:,:,x]
            #pdb.set_trace()
            Z.SetOrigin(xImage.GetOrigin())
            Z.SetSpacing(xImage.GetSpacing())
            Y.SetOrigin(xImage.GetOrigin())
            Y.SetSpacing(xImage.GetSpacing())
            xImage = sitk.Cast(xImage>sampleIntensityThreshold,7)*1000+0.01 #careful, could create overflow
            totalIntensity = sitk.SumProjection(sitk.SumProjection(xImage,0),1).GetPixel(0,0)
            z = sitk.SumProjection(sitk.SumProjection(sitk.Cast(Z,7)*xImage,0),1).GetPixel(0,0)/totalIntensity
            y = sitk.SumProjection(sitk.SumProjection(sitk.Cast(Y,7)*xImage,0),1).GetPixel(0,0)/totalIntensity
            # totalIntensity = sitk.SumProjection(sitk.SumProjection(sitk.GetImageFromArray(n.ones(xImage.GetSize())),0),1).GetPixel(0,0)
            #pdb.set_trace()
            # z = sitk.SumProjection(sitk.SumProjection(Z,0),1).GetPixel(0,0)/totalIntensity
            # y = sitk.SumProjection(sitk.SumProjection(Y,0),1).GetPixel(0,0)/totalIntensity
            # tmp = sitk.GetArrayFromImage(xImage)
            # tmp[int(y),int(z)] = 2000
            # plt.imshow(tmp)
            # plt.colorbar()
            # plt.show()
            center = [y,z]
            centers.append(center)

    # smoothen center line
    centers = n.array(centers)
    #centers = n.array([ndimage.gaussian_filter(centers[:,i],finalSize[[firstAxis,lastAxis][i]]/30.) for i in range(2)])
    #centers = centers.swapaxes(0,1)

    # get angles
    refCenter = n.array(stacks[0].TransformIndexToPhysicalPoint([int(i) for i in n.array(stacks[0].GetSize())/2.]))
    #origCenter = n.array([refCenter[i] for i in [lastAxis,firstAxis]])

    bestAngles = []
    refPoints = []
    print 'refCenter %s' %refCenter
    refPoints.append(refCenter)
    for iparam,param in enumerate(params):
        # point2 is refCenter in rotated view
        point2 = beads.transform(param,[refCenter])[0]
        # shift point2 in z (positive here since later compared to positive again)
        point2[lastAxis] += 100
        # transform back to reference view
        refPoint = beads.backTransform(param,[point2])[0]
        refPoints.append(refPoint)
        # calc direction vector
        refVector = refPoint-refCenter
        refVector = n.array([refVector[i] for i in [lastAxis,firstAxis]])
        refVector = refVector/n.linalg.norm(refVector)
        # calc angle with respect to [1,1]
        angle = calcAngles(n.array([refVector[0]]),n.array([refVector[1]]))
        bestAngles.append(angle)

    #pdb.set_trace()
    refPoints = n.array(refPoints)
    # plt.plot(refPoints[:,0],refPoints[:,2],'o')
    # plt.show()

    zCenter = finalSize[[lastAxis,firstAxis]]/2.
    lower = n.array([0,0])
    upper = finalSize[[lastAxis,firstAxis]]
    templateLower = lower - n.max(centers,0)+zCenter
    templateUpper = upper - n.min(centers,0)+zCenter
    print templateLower,templateUpper
    deltaplus = n.ceil(templateUpper-zCenter)
    deltaminus = n.ceil(zCenter-templateLower)
    templateSize = deltaminus+deltaplus

    Y,Z = n.mgrid[0:templateSize[0],0:templateSize[1]]
    Y = Y-deltaminus[0]
    Z = Z-deltaminus[1]
    norm = n.sqrt(n.power(Y,2)+n.power(Z,2))

    sigmoidHalfWidthInPixels = n.mean(finalSize[[firstAxis,lastAxis]])*sigmoidHalfWidthRelativeToImageSize
    halfY = 0.9 # half width is defined as the x value corresponding to y=halfY
    norm[norm==0] = 0.0001
    sigmoidA = n.log(1./halfY-1.)/n.arctan(sigmoidHalfWidthInPixels/norm)

    finalAngles = calcAngles(Y,Z)
    # plt.imshow(finalAngles)
    # plt.title('finalAngles')
    # plt.colorbar()
    # plt.show()

    # add cameras here
    viewAngles = []
    for i in range(len(bestAngles)):
        viewAngle = []
        viewAngle.append(bestAngles[i])
        viewAngle.append((bestAngles[i]+n.pi)%(2*n.pi))
        viewAngles.append(viewAngle)

    print viewAngles
    # calculate difference to ref angles
    weights = []
    for iview,viewAngle in enumerate(viewAngles):
        tmp = n.min([n.min([n.abs(finalAngles-i),n.abs(2*n.pi-n.abs(finalAngles-i))],0) for i in viewAngle],0)
        weights.append(tmp.astype(n.float32))
        # plt.imshow(weights[iview])
        # plt.title('weights1 %s' %iview)
        # plt.colorbar()
        # plt.show()
        # #tifffile.imsave('/home/malbert/delme/test%s.tif' %(iview),weights[iview])

    weightsDiff = []
    for iview,view in enumerate(viewAngles):
        weightsDiff.append(n.min([-weights[iview]+weights[i] for i in n.delete(range(len(viewAngles)),iview,0)],0))
        #tifffile.imsave('/home/malbert/delme/test%s.tif' %(iview),weightsDiff[iview])
        #sitk.WriteImage(sitk.Cast(sitk.GetImageFromArray(weightsDiff[iview]),3),'/home/malbert/delme/test%s.tif' %(iview))
        # plt.imshow(weightsDiff[iview])
        # plt.title('weightsDiff1 %s' %iview)
        # plt.colorbar()
        # plt.show()
    for iview,view in enumerate(viewAngles):
        weightsDiff[iview] = (1/(1+n.exp(sigmoidA*(weightsDiff[iview]))))
        # plt.imshow(weightsDiff[iview])
        # plt.title('weightsDiff2 %s' %iview)
        # plt.colorbar()
        # plt.show()
        #pdb.set_trace()
        #sitk.WriteImage(sitk.Cast(sitk.GetImageFromArray(weightsDiff[iview]*100),3),'/home/malbert/delme/test%s.tif' %(iview))

    weights = []
    weightsDiffSum = n.sum(weightsDiff,0)
    for iview,view in enumerate(viewAngles):
        weights.append(weightsDiff[iview]/weightsDiffSum)
        #sitk.WriteImage(sitk.Cast(sitk.GetImageFromArray(weights[iview]*1000),3),'/home/malbert/delme/test%s.tif' %(iview))

    #sitk.WriteImage(sitk.Cast(finalWeights[iview]*1000,3),'/home/malbert/delme/test0.tif')

    xWeights = []
    for icenter, center in enumerate(centers):
        xWeight = []
        for iview,view in enumerate(viewAngles):
            # pdb.set_trace()
            # plt.imshow(weights[iview])
            # plt.title('test')
            # plt.colorbar()
            # plt.show()
            xW = sitk.GetImageFromArray(weights[iview])
            #xW.SetOrigin((templateLower[0], templateLower[1]))
            xW.SetOrigin([0,0])
            tmpTransform = sitk.Transform(2,1)
            tmpSize = finalSize[[lastAxis,firstAxis]].astype(n.int64)
            tmpSize = [int(i) for i in tmpSize[::-1]]
            tmpOrigin = n.array([-center[i]+deltaminus[i] for i in [1,0]])
            #pdb.set_trace()
            tmpTransform.SetParameters(tmpOrigin)
            #pdb.set_trace()
            xW = sitk.Resample(xW,
                               tmpSize,
                               tmpTransform,
                               sitk.sitkLinear,
                               #tmpOrigin
                               )
            #pdb.set_trace()
            xW = sitk.GetArrayFromImage(xW)
            xWeight.append(xW)
            # plt.imshow(xW)
            # plt.title('weights %s %s' %(iview,center))
            # plt.colorbar()
            # plt.show()

        xWeights.append(xWeight)


    finalWeights = []
    for i in range(len(params)):
        #finalWeights.append(sitk.GetImageFromArray(xWeights[0][i]))
        if adaptiveCenterFile is None:
            tmp = n.array([xWeights[0][i]]*finalSize[axisOfRotation])
        else:
            tmp = n.array([xWeights[j][i] for j in range(finalSize[axisOfRotation])])
        if axisOfRotation == 0: numpyAxisOfRotation = 2
        elif axisOfRotation == 1: numpyAxisOfRotation = 1
        elif axisOfRotation == 2: numpyAxisOfRotation = 0
        tmp = tmp.swapaxes(0,numpyAxisOfRotation)
        if numpyAxisOfRotation == 2:
            otherAxes = range(3)
            otherAxes.remove(numpyAxisOfRotation)
            tmp = tmp.swapaxes(otherAxes[0],otherAxes[1])
        #tmp = tmp.swapaxes(0, 1).swapaxes(1, 2).astype(n.float32)
        tmp = tmp.astype(n.float32)
        finalWeights.append(sitk.GetImageFromArray(tmp))
    #sitk.WriteImage(sitk.Cast(finalWeights[iview]*1000,3),'/home/malbert/delme/test.tif')

    return finalWeights