Exemplo n.º 1
0
def param_mask_binary_depth_map_generator(lecture, batch_size=128,
                                          antialiasing=4,
                                          depth_scale=1/4):
    ignore = -0.25
    background = 0
    black = 51
    white = 255
    need_size = (1 - ignore)
    scale = 255 / need_size

    bw_artist = BlackWhiteArtist(black, white, background, antialiasing)
    depth_map_artist = DepthMapArtist()
    while True:
        ids, configs, structure = [a.astype(np.float32)
                                   for a in lecture.grid_params(batch_size)]

        grids, = draw_grids(ids, configs, structure, artist=bw_artist)
        depth_maps, = draw_grids(ids, configs, structure,
                                 artist=depth_map_artist,
                                 scales=[depth_scale])
        depth32 = (depth_maps / 255.).astype(np.float32)
        grids32 = (grids / scale + ignore).astype(np.float32)
        param = np.concatenate(
            lecture.normalize(ids, configs, structure), axis=1)
        yield param, grids32, depth32
Exemplo n.º 2
0
def generated_3d_tags(tag_distribution, batch_size=128, artist=None, scale=1.):
    if artist is None:
        artist = MaskGridArtist()
    labels = tag_distribution.sample(batch_size)
    grids = draw_grids(labels, scales=[scale], artist=artist)
    assert len(grids) == 1
    return labels, grids[0]
Exemplo n.º 3
0
def generated_3d_tags(tag_distribution, batch_size=128, artist=None, scale=1.):
    if artist is None:
        artist = MaskGridArtist()
    labels = tag_distribution.sample(batch_size)
    grids = draw_grids(labels, scales=[scale], artist=artist)
    assert len(grids) == 1
    return labels, grids[0]
Exemplo n.º 4
0
def grids_from_lecture(lecture, batch_size=128, artist=None, scale=1.):
    if artist is None:
        artist = MaskGridArtist()
    ids, configs, structure = lecture.grid_params(batch_size)
    grids = draw_grids(ids.astype(np.float32), configs.astype(np.float32),
                       structure.astype(np.float32),
                       scales=[scale], artist=artist)
    assert len(grids) == 1
    return ids, configs, structure, grids[0]
Exemplo n.º 5
0
def grids_from_lecture(lecture, batch_size=128, artist=None, scale=1.):
    if artist is None:
        artist = MaskGridArtist()
    ids, configs, structure = lecture.grid_params(batch_size)
    grids = draw_grids(ids.astype(np.float32),
                       configs.astype(np.float32),
                       structure.astype(np.float32),
                       scales=[scale],
                       artist=artist)
    assert len(grids) == 1
    return ids, configs, structure, grids[0]
Exemplo n.º 6
0
def generator_3d_tags_with_depth_map(tag_distribution, batch_size=128,
                                     antialiasing=4, depth_scale=1/4):
    ignore = -0.25
    background = 0
    black = 51
    white = 255
    need_size = (1 - ignore)
    scale = 255 / need_size

    bw_artist = BlackWhiteArtist(black, white, background, antialiasing)
    depth_map_artist = DepthMapArtist()
    while True:
        labels = tag_distribution.sample(batch_size)
        grids, = draw_grids(labels, artist=bw_artist)
        depth_maps, = draw_grids(labels, artist=depth_map_artist,
                                 scales=[depth_scale])
        depth_map_f32 = (depth_maps / 255.).astype(np.float32)
        grids_f32 = (grids / scale + ignore).astype(np.float32)
        norm_labels = tag_distribution.normalize(labels)
        yield norm_labels, grids_f32, depth_map_f32
Exemplo n.º 7
0
def evaluate_loss(gt_files, name, loss_fn, loss_dict, visualise=True,
                  bit_flips=0, translation=0, z_rotation=0):
    def outs_to_dict(outs, loss_dict):
        num_visual = len(loss_dict.visual)
        num_shape = len(loss_dict.shape)
        visual_dict = dict(zip(loss_dict.visual.keys(), outs[:num_visual]))
        shape_dict = dict(zip(loss_dict.shape.keys(),
                              outs[num_visual:num_visual+num_shape]))
        print_dict = dict(zip(loss_dict.print.keys(),
                              outs[num_visual+num_shape:]))
        return visual_dict, shape_dict, print_dict

    def alter_params(ids, configs):
        bs = len(configs)
        new_ids = []
        for id in ids:
            flipped_bits = np.random.choice(
                NUM_MIDDLE_CELLS, bit_flips, replace=False)
            id[flipped_bits] += 1
            id[id == 2] = 0
            new_ids.append(id)
        angle = np.random.uniform(-np.pi, np.pi, (bs, 1))
        configs[:, CONFIG_CENTER] += translation * \
            np.concatenate((np.cos(angle), np.sin(angle)), axis=1)
        configs[:, CONFIG_ROTS[0]] += z_rotation
        return np.stack(new_ids), configs

    nb_views = 16
    if type(visualise) == int:
        nb_views = visualise
        visualise = True

    batch_size = 8
    loss = 0
    num_batches = 0
    for gt, ids, configs in gt_grids(gt_files, batch_size):
        configs[:, CONFIG_CENTER] = 0
        ids, configs = alter_params(ids, configs)
        masks, = draw_grids(ids, configs, artist=MaskGridArtist())
        outs = loss_fn(masks, gt)
        visual_dict, shape_dict, print_dict = outs_to_dict(outs[1:], loss_dict)
        if visualise:
            out_dict = {"1-masks": np_binary_mask(masks), "0-img": gt}
            visual_dict.update(out_dict)
            visualise_loss(visual_dict, shape_dict, print_dict, nb_views)
            visualise = False
        l = outs[0]
        loss += l
        num_batches += 1


    loss /= num_batches
    return loss
Exemplo n.º 8
0
def generator_3d_tags_with_depth_map(tag_distribution,
                                     batch_size=128,
                                     antialiasing=4,
                                     depth_scale=1 / 4):
    ignore = -0.25
    background = 0
    black = 51
    white = 255
    need_size = (1 - ignore)
    scale = 255 / need_size

    bw_artist = BlackWhiteArtist(black, white, background, antialiasing)
    depth_map_artist = DepthMapArtist()
    while True:
        labels = tag_distribution.sample(batch_size)
        grids, = draw_grids(labels, artist=bw_artist)
        depth_maps, = draw_grids(labels,
                                 artist=depth_map_artist,
                                 scales=[depth_scale])
        depth_map_f32 = (depth_maps / 255.).astype(np.float32)
        grids_f32 = (grids / scale + ignore).astype(np.float32)
        norm_labels = tag_distribution.normalize(labels)
        yield norm_labels, grids_f32, depth_map_f32