Exemplo n.º 1
0
 def _ray_serve_get_runner_method(self, request_item):
     method_name = request_item.call_method
     if not hasattr(self, method_name):
         raise RayServeException(
             "Backend doesn't have method {} "
             "which is specified in the request. "
             "The avaiable methods are {}".format(method_name, dir(self))
         )
     return getattr(self, method_name)
Exemplo n.º 2
0
    def remote(self, *args, **kwargs):
        if len(args) != 0:
            raise RayServeException(
                "handle.remote must be invoked with keyword arguments."
            )

        return self.router_handle.enqueue_request.remote(
            self._make_metadata(), **kwargs
        )
Exemplo n.º 3
0
 def _check_slo_ms(self, slo_value):
     if slo_value is not None:
         try:
             slo_value = float(slo_value)
             if slo_value < 0:
                 raise ValueError(
                     "Request SLO must be positive, it is {}".format(
                         slo_value
                     )
                 )
             return slo_value
         except ValueError as e:
             raise RayServeException(str(e))
     return None
Exemplo n.º 4
0
    def invoke_batch(self, request_item_list):
        # TODO(alind) : create no-http services. The enqueues
        # from such services will always be TaskContext.Python.

        # Assumption : all the requests in a bacth
        # have same serve_benchmark context.

        # For batching kwargs are modified as follows -
        # kwargs [Python Context] : key,val
        # kwargs_list             : key, [val1,val2, ... , valn]
        # or
        # args[Web Context]       : val
        # args_list               : [val1,val2, ...... , valn]
        # where n (current batch size) <= max_batch_size of a backend

        arg_list = []
        kwargs_list = defaultdict(list)
        context_flags = set()
        batch_size = len(request_item_list)
        call_methods = set()

        for item in request_item_list:
            args, kwargs, is_web_context = parse_request_item(item)
            context_flags.add(is_web_context)

            call_method = self._ray_serve_get_runner_method(item)
            call_methods.add(call_method)

            if is_web_context:
                # Python context only have kwargs
                flask_request = args[0]
                arg_list.append(flask_request)
            else:
                # Web context only have one positional argument
                for k, v in kwargs.items():
                    kwargs_list[k].append(v)

                # Set the flask request as a list to conform
                # with batching semantics: when in batching
                # mode, each argument it turned into list.
                if self._ray_serve_count_num_positional(call_method):
                    arg_list.append(FakeFlaskRequest())

        try:
            # check mixing of query context
            # unified context needed
            if len(context_flags) != 1:
                raise RayServeException(
                    "Batched queries contain mixed context. Please only send "
                    "the same type of requests in batching mode."
                )
            serve_context.web = context_flags.pop()

            if len(call_methods) != 1:
                raise RayServeException(
                    "Queries contain mixed calling methods. Please only send "
                    "the same type of requests in batching mode."
                )
            call_method = call_methods.pop()

            serve_context.batch_size = batch_size
            # Flask requests are passed to __call__ as a list
            arg_list = [arg_list]

            result_list = call_method(*arg_list, **kwargs_list)

            if (not isinstance(result_list, list)) or (
                len(result_list) != batch_size
            ):
                raise RayServeException(
                    "__call__ function "
                    "doesn't preserve batch-size. "
                    "Please return a list of result "
                    "with length equals to the batch "
                    "size."
                )
            return result_list
        except Exception as e:
            wrapped_exception = wrap_to_ray_error(e)
            return [wrapped_exception for _ in range(batch_size)]
Exemplo n.º 5
0
 def __setattr__(self, name, value):
     raise RayServeException(_not_in_web_context_error)
Exemplo n.º 6
0
 def __getattribute__(self, name):
     raise RayServeException(_not_in_web_context_error)
Exemplo n.º 7
0
 def check(*args, **kwargs):
     if _get_global_state() is None:
         raise RayServeException(
             "Please run serve_benchmark.init to initialize or "
             "connect to existing ray serve_benchmark cluster.")
     return f(*args, **kwargs)