Exemplo n.º 1
0
def main(num_replicas, batch_size, method, filename):
    for node_id in ["up", "down"]:
        with serve_benchmark.using_router(node_id):
            serve_benchmark.create_endpoint(node_id)
            config = serve_benchmark.BackendConfig(
                max_batch_size=batch_size, num_replicas=num_replicas
            )
            serve_benchmark.create_backend(noop, node_id, backend_config=config)
            serve_benchmark.link(node_id, node_id)

    with serve_benchmark.using_router("up"):
        up_handle = serve_benchmark.get_handle("up")
    with serve_benchmark.using_router("down"):
        down_handle = serve_benchmark.get_handle("down")

    # start = time.perf_counter()
    oids = []

    if method == "chain":
        # closed loop latencies
        for i in range(num_queries):
            r = up_handle.options(tracing_metadata={"pipeline-id": i}).remote(
                data=image_data
            )
            oid = down_handle.options(
                tracing_metadata={"pipeline-id": i}
            ).remote(
                data=r  # torch tensor
            )
            ray.wait([oid], 1)
    elif method == "group":
        res = [
            up_handle.options(tracing_metadata={"pipeline-id": i}).remote(
                sleep_time=0.01, data=image_data
            )
            for i in range(num_queries)
        ]
        oids = [
            down_handle.options(tracing_metadata={"pipeline-id": i}).remote(
                sleep_time=0.02, data=d  # torch tensor
            )
            for i, d in enumerate(res)
        ]
    else:
        raise RuntimeError("Unreachable")
    # print(f"Submission time {time.perf_counter() - start}")

    # end = time.perf_counter()

    # duration = end - start
    # qps = num_queries / duration

    # print(f"Throughput {qps}")

    trace_file = filename or tempfile.mkstemp(suffix=".json")[1]
    with open(trace_file, "w") as f:
        json.dump(serve_benchmark.get_trace(), f)
    ray.timeline(f"ray_trace_{batch_size}-{method}.json")

    print(f"Serve trace file written to {trace_file}")
Exemplo n.º 2
0
    def __init__(self, vertex_config, model_name):
        super().__init__()
        handle_list = list()
        for node_id in vertex_config.keys():
            backend_config = vertex_config[node_id]
            with serve_benchmark.using_router(node_id):
                serve_benchmark.create_endpoint(node_id)
                config = serve_benchmark.BackendConfig(**backend_config)
                if node_id == "prepoc":
                    min_img_size = 224
                    transform = transforms.Compose([
                        transforms.Resize(min_img_size),
                        transforms.ToTensor(),
                        transforms.Normalize(
                            mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225],
                        ),
                    ])
                    serve_benchmark.create_backend(Transform,
                                                   node_id,
                                                   transform,
                                                   backend_config=config)
                elif node_id == "model":
                    serve_benchmark.create_backend(
                        PredictModelPytorch,
                        node_id,
                        model_name,
                        True,
                        backend_config=config,
                    )
                serve_benchmark.link(node_id, node_id)
                handle_list.append(serve_benchmark.get_handle(node_id))

        self.chain_handle = ChainHandle(handle_list)
def test_new_driver(serve_instance):
    script = """
import ray
ray.init(address="{}")

from benchmarking import serve_benchmark
serve_benchmark.init()

@serve_benchmark.route("/driver")
def driver(flask_request):
    return "OK!"
""".format(ray.worker._global_node._redis_address)

    with tempfile.NamedTemporaryFile(mode="w", delete=False) as f:
        path = f.name
        f.write(script)

    proc = subprocess.Popen(["python", path])
    return_code = proc.wait(timeout=10)
    assert return_code == 0

    handle = serve_benchmark.get_handle("driver")
    assert ray.get(handle.remote()) == "OK!"

    os.remove(path)
    def __init__(self, max_batch_size, pipeline_length):
        self.plength = pipeline_length
        self.handles = list()

        for index in range(self.plength):
            node_id = f"service-{index}"
            with serve_benchmark.using_router(node_id):
                serve_benchmark.create_endpoint(node_id)
                config = serve_benchmark.BackendConfig(
                    max_batch_size=max_batch_size, num_replicas=1)
                serve_benchmark.create_backend(noop,
                                               node_id,
                                               backend_config=config)
                serve_benchmark.link(node_id, node_id)
                self.handles.append(serve_benchmark.get_handle(node_id))
Exemplo n.º 5
0
def test_no_route(serve_instance):
    serve_benchmark.create_endpoint("noroute-endpoint")
    global_state = serve_benchmark.api._get_global_state()

    result = global_state.route_table.list_service(include_headless=True)
    assert result[NO_ROUTE_KEY] == ["noroute-endpoint"]

    without_headless_result = global_state.route_table.list_service()
    assert NO_ROUTE_KEY not in without_headless_result

    def func(_, i=1):
        return 1

    serve_benchmark.create_backend(func, "backend:1")
    serve_benchmark.link("noroute-endpoint", "backend:1")
    service_handle = serve_benchmark.get_handle("noroute-endpoint")
    result = ray.get(service_handle.remote(i=1))
    assert result == 1
Exemplo n.º 6
0
def test_batching_exception(serve_instance):
    class NoListReturned:
        def __init__(self):
            self.count = 0

        @serve_benchmark.accept_batch
        def __call__(self, flask_request, temp=None):
            batch_size = serve_benchmark.context.batch_size
            return batch_size

    serve_benchmark.create_endpoint("exception-test", "/noListReturned")
    # set the max batch size
    b_config = BackendConfig(max_batch_size=5)
    serve_benchmark.create_backend(NoListReturned,
                                   "exception:v1",
                                   backend_config=b_config)
    serve_benchmark.link("exception-test", "exception:v1")

    handle = serve_benchmark.get_handle("exception-test")
    with pytest.raises(ray.exceptions.RayTaskError):
        assert ray.get(handle.remote(temp=1))
Exemplo n.º 7
0
def test_batching(serve_instance):
    class BatchingExample:
        def __init__(self):
            self.count = 0

        @serve_benchmark.accept_batch
        def __call__(self, flask_request, temp=None):
            self.count += 1
            batch_size = serve_benchmark.context.batch_size
            return [self.count] * batch_size

    serve_benchmark.create_endpoint("counter1", "/increment")

    # Keep checking the routing table until /increment is populated
    while ("/increment"
           not in requests.get("http://127.0.0.1:8000/-/routes").json()):
        time.sleep(0.2)

    # set the max batch size
    b_config = BackendConfig(max_batch_size=5)
    serve_benchmark.create_backend(BatchingExample,
                                   "counter:v11",
                                   backend_config=b_config)
    serve_benchmark.link("counter1", "counter:v11")

    future_list = []
    handle = serve_benchmark.get_handle("counter1")
    for _ in range(20):
        f = handle.remote(temp=1)
        future_list.append(f)

    counter_result = ray.get(future_list)
    # since count is only updated per batch of queries
    # If there atleast one __call__ fn call with batch size greater than 1
    # counter result will always be less than 20
    assert max(counter_result) < 20
Exemplo n.º 8
0
def main(num_replicas, method):
    for node_id in ["up", "down"]:
        with serve_benchmark.using_router(node_id):
            serve_benchmark.create_endpoint(node_id)
            config = serve_benchmark.BackendConfig(max_batch_size=1,
                                                   num_replicas=num_replicas)
            serve_benchmark.create_backend(noop,
                                           node_id,
                                           backend_config=config)
            serve_benchmark.link(node_id, node_id)

    with serve_benchmark.using_router("up"):
        up_handle = serve_benchmark.get_handle("up")
    with serve_benchmark.using_router("down"):
        down_handle = serve_benchmark.get_handle("down")

    start = time.perf_counter()
    oids = []

    if method == "chain":
        for i in range(num_queries):
            r = up_handle.options(tracing_metadata={
                "pipeline-id": i
            }).remote(sleep_time=0.01, data=image_data)
            r = down_handle.options(tracing_metadata={
                "pipeline-id": i
            }).remote(
                sleep_time=0.02,
                data=r  # torch tensor
            )
            oids.append(r)
    elif method == "group":
        res = [
            up_handle.options(tracing_metadata={
                "pipeline-id": i
            }).remote(sleep_time=0.01, data=image_data)
            for i in range(num_queries)
        ]
        oids = [
            down_handle.options(tracing_metadata={
                "pipeline-id": i
            }).remote(
                sleep_time=0.02,
                data=d  # torch tensor
            ) for i, d in enumerate(res)
        ]
    else:
        raise RuntimeError("Unreachable")
    print(f"Submission time {time.perf_counter() - start}")

    ray.wait(oids, len(oids))
    end = time.perf_counter()

    duration = end - start
    qps = num_queries / duration

    print(f"Throughput {qps}")

    _, trace_file = tempfile.mkstemp(suffix=".json")
    with open(trace_file, "w") as f:
        json.dump(serve_benchmark.get_trace(), f)
    print(f"trace file written to {trace_file}")