Exemplo n.º 1
0
class Tensorflow2Classifier(bentoml.BentoService):
    @bentoml.api(input=TfTensorInput(), batch=True)
    def predict1(self, tensor):
        return self.artifacts.model1(tensor)

    @bentoml.api(input=TfTensorInput(), batch=True)
    def predict2(self, tensor):
        return self.artifacts.model2(tensor)

    @bentoml.api(input=JsonInput(), batch=True)
    def predict3(self, jsons):
        import tensorflow as tf

        tensor = tf.ragged.constant(jsons, dtype=tf.float64)
        return self.artifacts.model3(tensor)
Exemplo n.º 2
0
def test_tf_tensor_handle_batch_request():
    '''
    ref: https://www.tensorflow.org/tfx/serving/api_rest#request_format_2
    '''
    from bentoml.adapters import TfTensorInput

    input_adapter = TfTensorInput()
    request = Mock()

    for input_data, except_result in zip(TEST_CASES, EXPECTED_RESULTS):
        request.data = json.dumps(input_data).encode('utf-8')
        responses = input_adapter.handle_batch_request([request] * 3,
                                                       lambda i: i)

        for response in responses:
            prediction = json.loads(response.data)
            assert_eq_or_both_nan(except_result, prediction)
Exemplo n.º 3
0
def test_tf_tensor_handle_request():
    '''
    ref: https://www.tensorflow.org/tfx/serving/api_rest#request_format_2
    '''
    from bentoml.adapters import TfTensorInput

    request = Mock()
    request.headers = {}
    request.content_type = 'application/json'

    input_adapter = TfTensorInput()

    for input_data, except_result in zip(TEST_CASES, EXPECTED_RESULTS):
        request.data = json.dumps(input_data).encode('utf-8')
        response = input_adapter.handle_request(request, lambda i: i)

        prediction = json.loads(response.get_data())
        assert_eq_or_both_nan(except_result, prediction)
class Tensorflow1Classifier(bentoml.BentoService):
    @bentoml.api(input=TfTensorInput(), batch=True)
    def predict(self, tensor):
        import tensorflow as tf

        tf.enable_eager_execution()

        pred_func = self.artifacts.model.signatures['serving_default']
        return pred_func(tensor)['prediction']
Exemplo n.º 5
0
def test_tf_tensor_handle_batch_request(test_cases):
    '''
    ref: https://www.tensorflow.org/tfx/serving/api_rest#request_format_2
    '''
    from bentoml.adapters import TfTensorInput
    from bentoml.marshal.utils import SimpleRequest

    input_adapter = TfTensorInput()
    request = MagicMock(spec=flask.Request)

    input_data, headers, except_result = test_cases
    request.get_data.return_value = json.dumps(input_data).encode('utf-8')
    request.headers = headers
    responses = input_adapter.handle_batch_request(
        [SimpleRequest.from_flask_request(request)] * 3, lambda i: i)

    for response in responses:
        prediction = json.loads(response.data)
        assert_eq_or_both_nan(except_result, prediction)
Exemplo n.º 6
0
def test_tf_tensor_handle_request(test_cases):
    '''
    ref: https://www.tensorflow.org/tfx/serving/api_rest#request_format_2
    '''
    from bentoml.adapters import TfTensorInput

    request = MagicMock(spec=flask.Request)

    request.headers = {}
    request.content_type = 'application/json'

    input_adapter = TfTensorInput()

    input_data, headers, except_result = test_cases
    request.get_data.return_value = json.dumps(input_data).encode('utf-8')
    request.headers = headers
    response = input_adapter.handle_request(request, lambda i: i)

    prediction = json.loads(response.get_data())
    assert_eq_or_both_nan(except_result, prediction)
Exemplo n.º 7
0
def test_tf_tensor_handle_request(make_api, test_cases):
    '''
    ref: https://www.tensorflow.org/tfx/serving/api_rest#request_format_2
    '''
    from bentoml.adapters import TfTensorInput

    api = make_api(input_adapter=TfTensorInput(), user_func=lambda i: i)

    input_data, headers, except_result = test_cases
    body = json.dumps(input_data).encode('utf-8')
    request = HTTPRequest(headers=headers, body=body)

    response = tuple(api.handle_batch_request([request]))[0]

    prediction = json.loads(response.body)
    assert_eq_or_both_nan(except_result, prediction)
class Tensorflow2Classifier(bentoml.BentoService):
    @bentoml.api(input=TfTensorInput())
    def predict(self, tensor):
        return self.artifacts.model(tensor)
class FashionMnistTensorflow(bentoml.BentoService):
    @bentoml.api(input=TfTensorInput(), batch=True)
    def predict(self, inputs):
        outputs = self.artifacts.model.predict_image(inputs)
        output_classes = tf.math.argmax(outputs, axis=1)
        return [FASHION_MNIST_CLASSES[c] for c in output_classes]