Exemplo n.º 1
0
    def learn(self, edge, strategy):
        self.display = []

        with open('Model.csv', 'w', newline='') as stream:
            writer = csv.writer(stream)
            self.get_model().train(input_fn=self.train_input_fn(), steps=100)
            evaluation_result = self.get_model().evaluate(
                input_fn=self.test_input_fn())
            predictions = list(
                self.get_model().predict(input_fn=self.test_input_fn()))
            for pred in predictions:
                self.test_results_info[3].append(
                    round(pred['probabilities'][0], 2))
                self.test_results_info[4].append(
                    round(pred['probabilities'][1], 2))
                self.test_results_info[5].append(
                    round(pred['probabilities'][2], 2))
                self.test_results_info[6].append(str(pred['classes']))
            prediction_result = betting.test_betting_stategy(
                predictions, self.test_features, self.test_labels,
                self.test_results_info, edge, strategy)

            writer.writerow([
                evaluation_result['accuracy'],
                evaluation_result['average_loss'],
                prediction_result['performance']
            ])
            self.display.append(prediction_result)
            self.display.append(evaluation_result)
            with open('Predictions.csv', 'w', newline='') as out:
                writer = csv.writer(out)
                writer.writerow(
                    ["Home", "Away", "Date", "P(H)", "P(D)", "P(A)", "P"])
                for j in range(len(self.test_results_info[0])):
                    writer.writerow([
                        self.test_results_info[0][j],
                        self.test_results_info[1][j],
                        self.test_results_info[2][j].strftime('%d-%m-%Y'),
                        self.test_results_info[3][j],
                        self.test_results_info[4][j],
                        self.test_results_info[5][j],
                        self.test_results_info[6][j].replace("b", "").replace(
                            "['", "").replace("']", "")
                    ])
        return self.display
Exemplo n.º 2
0
def main(argv):
    os.system('rm -rf model/*')
    data = dataset.Dataset('data/liga.csv')
    train_results_len = int(TRAINING_SET_FRACTION *
                            len(data.processed_results))
    train_results = data.processed_results[:train_results_len]
    test_results = data.processed_results[train_results_len:]

    def map_results(results):
        features = {}

        for result in results:
            for key in result.keys():
                if key not in features:
                    features[key] = []

                features[key].append(result[key])

        for key in features.keys():
            features[key] = np.array(features[key])

        return features, features['result']

    train_features, train_labels = map_results(train_results)
    test_features, test_labels = map_results(test_results)
    train_input_fn = tf.estimator.inputs.numpy_input_fn(x=train_features,
                                                        y=train_labels,
                                                        batch_size=500,
                                                        num_epochs=None,
                                                        shuffle=True)
    test_input_fn = tf.estimator.inputs.numpy_input_fn(x=test_features,
                                                       y=test_labels,
                                                       num_epochs=1,
                                                       shuffle=False)

    feature_columns = []

    for mode in ['home', 'away']:
        feature_columns = feature_columns + [
            tf.feature_column.numeric_column(key='{}-wins'.format(mode)),
            tf.feature_column.numeric_column(key='{}-draws'.format(mode)),
            tf.feature_column.numeric_column(key='{}-losses'.format(mode)),
            tf.feature_column.numeric_column(key='{}-goals'.format(mode)),
            tf.feature_column.numeric_column(
                key='{}-opposition-goals'.format(mode)),
            tf.feature_column.numeric_column(key='{}-shots'.format(mode)),
            tf.feature_column.numeric_column(
                key='{}-shots-on-target'.format(mode)),
            tf.feature_column.numeric_column(
                key='{}-opposition-shots'.format(mode)),
            tf.feature_column.numeric_column(
                key='{}-opposition-shots-on-target'.format(mode)),
        ]
    model = tf.estimator.DNNClassifier(
        model_dir='model/',
        hidden_units=[10],
        feature_columns=feature_columns,
        n_classes=3,
        label_vocabulary=['H', 'D', 'A'],
        optimizer=tf.train.ProximalAdagradOptimizer(
            learning_rate=0.1, l1_regularization_strength=0.001))
    with open('training-log.csv', 'w') as stream:
        csvwriter = csv.writer(stream)

        for i in range(0, 400):
            model.train(input_fn=train_input_fn, steps=100)
            evaluation_result = model.evaluate(input_fn=test_input_fn)
            predictions = list(model.predict(input_fn=test_input_fn))
            prediction_result = betting.test_betting_stategy(
                predictions, test_features, test_labels)
            csvwriter.writerow([(i + 1) * 100, evaluation_result['accuracy'],
                                evaluation_result['average_loss'],
                                prediction_result['performance']])
def main(argv):
    data = dataset.Dataset('data/book.csv')

    train_results_len = int(TRAINING_SET_FRACTION *
                            len(data.processed_results))
    train_results = data.processed_results[:train_results_len]
    test_results = data.processed_results[train_results_len:]
    team_details = data.team_details[train_results_len:]

    def map_results(results):
        features = {}

        for result in results:
            for key in result.keys():
                if key not in features:
                    features[key] = []

                features[key].append(result[key])

        for key in features.keys():

            features[key] = np.array(features[key])
        return features, features['result']

    train_features, train_labels = map_results(train_results)
    test_features, test_labels = map_results(test_results)

    train_input_fn = tf.estimator.inputs.numpy_input_fn(x=train_features,
                                                        y=train_labels,
                                                        batch_size=500,
                                                        num_epochs=None,
                                                        shuffle=True)

    test_input_fn = tf.estimator.inputs.numpy_input_fn(x=test_features,
                                                       y=test_labels,
                                                       num_epochs=1,
                                                       shuffle=False)

    feature_columns = []

    for mode in ['home', 'away']:
        feature_columns = feature_columns + [
            tf.feature_column.numeric_column(key='{}-wins'.format(mode)),
            tf.feature_column.numeric_column(key='{}-draws'.format(mode)),
            tf.feature_column.numeric_column(key='{}-losses'.format(mode)),
            tf.feature_column.numeric_column(key='{}-goals'.format(mode)),
            tf.feature_column.numeric_column(
                key='{}-opposition-goals'.format(mode)),
            tf.feature_column.numeric_column(key='{}-shots'.format(mode)),
            tf.feature_column.numeric_column(
                key='{}-shots-on-target'.format(mode)),
            tf.feature_column.numeric_column(
                key='{}-opposition-shots'.format(mode)),
            tf.feature_column.numeric_column(
                key='{}-opposition-shots-on-target'.format(mode)),
        ]

    model = tf.estimator.DNNClassifier(
        model_dir='model/',
        hidden_units=[10],
        feature_columns=feature_columns,
        n_classes=3,
        label_vocabulary=['H', 'D', 'A'],
        optimizer=tf.train.ProximalAdagradOptimizer(
            learning_rate=0.1, l1_regularization_strength=0.001))

    _accuracy = -1
    FILENAME = 'results.csv'

    with open('training-log.csv', 'w') as stream:
        csvwriter = csv.writer(stream)

        for i in range(0, 2):
            model.train(input_fn=train_input_fn, steps=100)
            evaluation_result = model.evaluate(input_fn=test_input_fn)

            predictions = list(model.predict(input_fn=test_input_fn))
            prediction_result = betting.test_betting_stategy(
                predictions, test_features, test_labels)

            if (evaluation_result['accuracy'] > _accuracy):
                _accuracy = evaluation_result['accuracy']
                f = open(FILENAME, 'w')
                f.write('HomeTeam,AwayTeam,H,D,A,Prediction\n')
                for idx, val in enumerate(predictions):
                    lst = team_details[idx]
                    lst.extend(list(val['probabilities']))
                    lst.append(val['classes'][0].decode('utf-8'))
                    values = list(map(str, lst))
                    f.write(','.join(values) + '\n')
                    del lst
                    del values
                f.close()

            csvwriter.writerow([(i + 1) * 100, evaluation_result['accuracy'],
                                evaluation_result['average_loss'],
                                prediction_result['performance']])