Exemplo n.º 1
0
def prunepaths_1D(g2, path, conn):
    c = []
    g = cloneempty(g2)
    for p in conn:
        mask = addapath(g,path,p)
        if isedgesubset(bfu.increment(g), g2): c.append(tuple(p))
        delapath(g,path,p,mask)
    return c
Exemplo n.º 2
0
 def nodesearch(g, g2, edges, s):
     if edges:
         e = edges.pop()
         ln = [n for n in g2]
         for n in ln:
             if (n,e) in single_cache: continue
             mask = add2edges(g,e,n)
             if isedgesubsetD(bfu.increment(g), g2):
                 r = nodesearch(g,g2,edges,s)
                 if r and edgeset(bfu.increment(r))==edgeset(g2):
                     s.add(bfu.g2num(r))
                     if capsize and len(s)>capsize:
                         raise ValueError('Too many elements in eqclass')
             del2edges(g,e,n,mask)
         edges.append(e)
     else:
         return g
Exemplo n.º 3
0
    def nodesearch(g, g2, order, inlist, s, cds, pool, pc):
        if order:
            if bfu.increment(g) == g2:
                s.add(bfu.g2num(g))
                if capsize and len(s) > capsize:
                    raise ValueError('Too many elements')
                s.update(supergraphs_in_eq(g, g2))
                return g

            key = order[0]
            if pc:
                tocheck = [
                    x for x in pc if x in cds[len(inlist) - 1][inlist[0]]
                ]
            else:
                tocheck = cds[len(inlist) - 1][inlist[0]]

            if len(order) > 1:
                kk = order[1]
                pc = predictive_check(g, g2, pool[len(inlist)],
                                      c[edge_function_idx(kk)], kk)
            else:
                pc = set()

            adder, remover, masker = f[edge_function_idx(key)]
            checks_ok = c[edge_function_idx(key)]

            for n in tocheck:
                if not checks_ok(key, n, g, g2): continue
                masked = np.prod(masker(g, key, n))
                if masked:
                    nodesearch(g, g2, order[1:], [n] + inlist, s, cds, pool,
                               pc)
                else:
                    mask = adder(g, key, n)
                    nodesearch(g, g2, order[1:], [n] + inlist, s, cds, pool,
                               pc)
                    remover(g, key, n, mask)

        elif bfu.increment(g) == g2:
            s.add(bfu.g2num(g))
            if capsize and len(s) > capsize:
                raise ValueError('Too many elements')
            return g
Exemplo n.º 4
0
 def nodesearch(g, g2, edges, s):
     if edges:
         #key, checklist = edges.popitem()
         key = random.choice(edges.keys())
         checklist = edges.pop(key)
         adder, remover = f[edge_function_idx(key)]
         checks_ok = c[edge_function_idx(key)]
         for n in checklist:
             mask = adder(g,key,n)
             if isedgesubset(bfu.increment(g), g2):
                 r = nodesearch(g,g2,edges,s)
                 if r and bfu.increment(r)==g2:
                     s.add(bfu.g2num(r))
                     if capsize and len(s)>capsize:
                         raise ValueError('Too many elements')
             remover(g,key,n,mask)
         edges[key] = checklist
     else:
         return g
Exemplo n.º 5
0
def g22g1(g2, capsize=None):
    '''
    computes all g1 that are in the equivalence class for g2
    '''
    if ecj.isSclique(g2):
        print 'Superclique - any SCC with GCD = 1 fits'
        return set([-1])

    single_cache = {}

    @memo # memoize the search
    def nodesearch(g, g2, edges, s):
        if edges:
            if bfu.increment(g) == g2:
                s.add(bfu.g2num(g))
                if capsize and len(s)>capsize:
                    raise ValueError('Too many elements')
                return g
            e = edges[0]
            for n in g2:

                if (n,e) in single_cache: continue
                if not edge_increment_ok(e[0],n,e[1],g,g2): continue

                mask = add2edges(g,e,n)
                r = nodesearch(g,g2,edges[1:],s)
                del2edges(g,e,n,mask)

        elif bfu.increment(g)==g2:
            s.add(bfu.g2num(g))
            if capsize and len(s)>capsize:
                raise ValueError('Too many elements in eqclass')
            return g

    # find all directed g1's not conflicting with g2
    n = len(g2)
    edges = gk.edgelist(g2)
    random.shuffle(edges)
    g = cloneempty(g2)

    for e in edges:
        for n in g2:

            mask = add2edges(g,e,n)
            if not isedgesubset(bfu.increment(g), g2):
                single_cache[(n,e)] = False
            del2edges(g,e,n,mask)

    s = set()
    try:
        nodesearch(g,g2,edges,s)
    except ValueError:
        s.add(0)
    return s
Exemplo n.º 6
0
def checker(n,ee):
    g = bfu.ringmore(n,ee)
    g2 = bfu.increment(g)
    d = checkable(g2)
    t = [len(d[x]) for x in d]
    r = []
    n = len(g2)
    ee= len(gk.edgelist(g2))
    for i in range(1,len(t)):
        r.append(sum(np.log10(t[:i])) - ee*np.log10(n))
    return r
Exemplo n.º 7
0
    def nodesearch0(g, g2, order, inlist, s, cds):

        if order:
            key = order.pop(0)
            tocheck = cds[len(inlist)-1][inlist[0]]

            adder, remover, masker = f[edge_function_idx(key)]
            checks_ok = c[edge_function_idx(key)]

            if len(tocheck) > 1:
                for n in tocheck:
                    if not checks_ok(key,n,g,g2): continue
                    mask = masker(g,key,n)
                    if not np.prod(mask):
                        mask = adder(g,key,n)
                        r = nodesearch0(g,g2,order, [n]+inlist, s, cds)
                        if r and bfu.increment(r)==g2:
                            s.add(bfu.g2num(r))
                            if capsize and len(s)>capsize:
                                raise ValueError('Too many elements')
                        remover(g,key,n,mask)
                    else:
                        r = nodesearch0(g,g2,order, [n]+inlist, s, cds)
                        if r and bfu.increment(r)==g2:
                            s.add(bfu.g2num(r))
                            if capsize and len(s)>capsize:
                                raise ValueError('Too many elements')
            elif tocheck:
                (n,) = tocheck
                mask = adder(g,key,n)
                r = nodesearch0(g,g2, order, [n]+inlist, s, cds)
                if r and bfu.increment(r) == g2:
                    s.add(bfu.g2num(r))
                    if capsize and len(s)>capsize:
                        raise ValueError('Too many elements')
                remover(g,key,n,mask)

            order.insert(0,key)

        else:
            return g
Exemplo n.º 8
0
def checkerDS(n,ee):
    g = bfu.ringmore(n,ee)
    g2 = bfu.increment(g)
    gg = checkable(g2)
    d,p,idx = conformanceDS(g2,gg,gg.keys())
    t = [len(x) for x in p]
    r = []
    n = len(g2)
    ee= len(gk.edgelist(g2))
    for i in range(1,len(t)):
        r.append(sum(np.log10(t[:i])) - ee*np.log10(n))
    return r
Exemplo n.º 9
0
    def nodesearch(g, g2, order, inlist, s, cds, pool, pc):
        if order:
            if bfu.increment(g) == g2:
                s.add(bfu.g2num(g))
                if capsize and len(s)>capsize:
                    raise ValueError('Too many elements')
                s.update(supergraphs_in_eq(g, g2))
                return g

            key = order[0]
            if pc:
                tocheck = [x for x in pc if x in cds[len(inlist)-1][inlist[0]]]
            else:
                tocheck = cds[len(inlist)-1][inlist[0]]

            if len(order) > 1:
                kk = order[1]
                pc = predictive_check(g,g2,pool[len(inlist)],
                                      c[edge_function_idx(kk)],kk)
            else:
                pc = set()

            adder, remover, masker = f[edge_function_idx(key)]
            checks_ok = c[edge_function_idx(key)]

            for n in tocheck:
                if not checks_ok(key,n,g,g2): continue
                masked = np.prod(masker(g,key,n))
                if masked:
                    nodesearch(g,g2,order[1:], [n]+inlist, s, cds, pool, pc)
                else:
                    mask = adder(g,key,n)
                    nodesearch(g,g2,order[1:], [n]+inlist, s, cds, pool, pc)
                    remover(g,key,n,mask)

        elif bfu.increment(g)==g2:
            s.add(bfu.g2num(g))
            if capsize and len(s)>capsize:
                raise ValueError('Too many elements')
            return g
Exemplo n.º 10
0
    def nodesearch(g, g2, edges, s):
        if edges:
            if bfu.increment(g) == g2:
                s.add(bfu.g2num(g))
                if capsize and len(s)>capsize:
                    raise ValueError('Too many elements')
                return g
            e = edges[0]
            for n in g2:

                if (n,e) in single_cache: continue
                if not edge_increment_ok(e[0],n,e[1],g,g2): continue

                mask = add2edges(g,e,n)
                r = nodesearch(g,g2,edges[1:],s)
                del2edges(g,e,n,mask)

        elif bfu.increment(g)==g2:
            s.add(bfu.g2num(g))
            if capsize and len(s)>capsize:
                raise ValueError('Too many elements in eqclass')
            return g
Exemplo n.º 11
0
def edge_backtrack2g1_directed(g2, capsize=None):
    '''
    computes all g1 that are in the equivalence class for g2
    '''
    if ecj.isSclique(g2):
        print 'Superclique - any SCC with GCD = 1 fits'
        return set([-1])

    single_cache = {}

    def edgeset(g):
        return set(gk.edgelist(g))

    @memo  # memoize the search
    def nodesearch(g, g2, edges, s):
        if edges:
            e = edges.pop()
            ln = [n for n in g2]
            for n in ln:
                if (n, e) in single_cache: continue
                mask = add2edges(g, e, n)
                if isedgesubsetD(bfu.increment(g), g2):
                    r = nodesearch(g, g2, edges, s)
                    if r and edgeset(bfu.increment(r)) == edgeset(g2):
                        s.add(bfu.g2num(r))
                        if capsize and len(s) > capsize:
                            raise ValueError('Too many elements in eqclass')
                del2edges(g, e, n, mask)
            edges.append(e)
        else:
            return g

    # find all directed g1's not conflicting with g2
    n = len(g2)
    edges = gk.edgelist(g2)
    random.shuffle(edges)
    g = cloneempty(g2)

    for e in edges:
        for n in g2:
            mask = add2edges(g, e, n)
            if not isedgesubsetD(bfu.increment(g), g2):
                single_cache[(n, e)] = False
            del2edges(g, e, n, mask)

    s = set()
    try:
        nodesearch(g, g2, edges, s)
    except ValueError:
        s.add(0)
    return s
Exemplo n.º 12
0
def edge_backtrack2g1_directed(g2, capsize=None):
    '''
    computes all g1 that are in the equivalence class for g2
    '''
    if ecj.isSclique(g2):
        print 'Superclique - any SCC with GCD = 1 fits'
        return set([-1])

    single_cache = {}

    def edgeset(g):
        return set(gk.edgelist(g))
    @memo # memoize the search
    def nodesearch(g, g2, edges, s):
        if edges:
            e = edges.pop()
            ln = [n for n in g2]
            for n in ln:
                if (n,e) in single_cache: continue
                mask = add2edges(g,e,n)
                if isedgesubsetD(bfu.increment(g), g2):
                    r = nodesearch(g,g2,edges,s)
                    if r and edgeset(bfu.increment(r))==edgeset(g2):
                        s.add(bfu.g2num(r))
                        if capsize and len(s)>capsize:
                            raise ValueError('Too many elements in eqclass')
                del2edges(g,e,n,mask)
            edges.append(e)
        else:
            return g
    # find all directed g1's not conflicting with g2
    n = len(g2)
    edges = gk.edgelist(g2)
    random.shuffle(edges)
    g = cloneempty(g2)

    for e in edges:
        for n in g2:
            mask = add2edges(g,e,n)
            if not isedgesubsetD(bfu.increment(g), g2):
                single_cache[(n,e)] = False
            del2edges(g,e,n,mask)

    s = set()
    try:
        nodesearch(g,g2,edges,s)
    except ValueError:
        s.add(0)
    return s