Exemplo n.º 1
0
    def _updateTransitionMatrix(self):
        """
        Updates the hidden-state transition matrix and the initial distribution

        """
        # TRANSITION MATRIX
        C = self.model.count_matrix() + self.prior_C  # posterior count matrix

        # check if we work with these options
        if self.reversible and not _tmatrix_disconnected.is_connected(C, strong=True):
            raise NotImplementedError(
                "Encountered disconnected count matrix with sampling option reversible:\n "
                + str(C)
                + "\nUse prior to ensure connectivity or use reversible=False."
            )
        # ensure consistent sparsity pattern (P0 might have additional zeros because of underflows)
        # TODO: these steps work around a bug in msmtools. Should be fixed there
        P0 = msmest.transition_matrix(C, reversible=self.reversible, maxiter=10000, warn_not_converged=False)
        zeros = np.where(P0 + P0.T == 0)
        C[zeros] = 0
        # run sampler
        Tij = msmest.sample_tmatrix(
            C, nsample=1, nsteps=self.transition_matrix_sampling_steps, reversible=self.reversible
        )

        # INITIAL DISTRIBUTION
        if self.stationary:  # p0 is consistent with P
            p0 = _tmatrix_disconnected.stationary_distribution(Tij, C=C)
        else:
            n0 = self.model.count_init().astype(float)
            p0 = np.random.dirichlet(n0 + self.prior_n0)  # sample p0 from posterior

        # update HMM with new sample
        self.model.update(p0, Tij)
Exemplo n.º 2
0
    def stationary_distribution(self):
        r""" Compute stationary distribution of hidden states if possible.

        Raises
        ------
        ValueError if the HMM is not stationary

        """
        assert _tmatrix_disconnected.is_connected(self._Tij, strong=False), \
            'No unique stationary distribution because transition matrix is not connected'
        import msmtools.analysis as msmana
        return msmana.stationary_distribution(self._Tij)
Exemplo n.º 3
0
    def stationary_distribution(self):
        r""" Compute stationary distribution of hidden states if possible.

        Raises
        ------
        ValueError if the HMM is not stationary

        """
        assert _tmatrix_disconnected.is_connected(self._Tij, strong=False), \
            'No unique stationary distribution because transition matrix is not connected'
        import msmtools.analysis as msmana
        return msmana.stationary_distribution(self._Tij)
Exemplo n.º 4
0
    def _updateTransitionMatrix(self):
        """
        Updates the hidden-state transition matrix and the initial distribution

        """
        # TRANSITION MATRIX
        C = self.model.count_matrix() + self.prior_C  # posterior count matrix

        # check if we work with these options
        if self.reversible and not _tmatrix_disconnected.is_connected(
                C, strong=True):
            raise NotImplementedError(
                'Encountered disconnected count matrix with sampling option reversible:\n '
                + str(C) +
                '\nUse prior to ensure connectivity or use reversible=False.')
        # ensure consistent sparsity pattern (P0 might have additional zeros because of underflows)
        # TODO: these steps work around a bug in msmtools. Should be fixed there
        P0 = msmest.transition_matrix(C,
                                      reversible=self.reversible,
                                      maxiter=10000,
                                      warn_not_converged=False)
        zeros = np.where(P0 + P0.T == 0)
        C[zeros] = 0
        # run sampler
        Tij = msmest.sample_tmatrix(
            C,
            nsample=1,
            nsteps=self.transition_matrix_sampling_steps,
            reversible=self.reversible)

        # INITIAL DISTRIBUTION
        if self.stationary:  # p0 is consistent with P
            p0 = _tmatrix_disconnected.stationary_distribution(Tij, C=C)
        else:
            n0 = self.model.count_init().astype(float)
            first_timestep_counts_with_prior = n0 + self.prior_n0
            positive = first_timestep_counts_with_prior > 0
            p0 = np.zeros_like(n0)
            p0[positive] = np.random.dirichlet(
                first_timestep_counts_with_prior[positive]
            )  # sample p0 from posterior

        # update HMM with new sample
        self.model.update(p0, Tij)
Exemplo n.º 5
0
    def __init__(self,
                 observations,
                 nstates,
                 initial_model=None,
                 reversible=True,
                 stationary=False,
                 transition_matrix_sampling_steps=1000,
                 p0_prior='mixed',
                 transition_matrix_prior='mixed',
                 output='gaussian'):
        """Initialize a Bayesian hidden Markov model sampler.

        Parameters
        ----------
        observations : list of numpy arrays representing temporal data
            `observations[i]` is a 1d numpy array corresponding to the observed trajectory index `i`
        nstates : int
            The number of states in the model.
        initial_model : HMM, optional, default=None
            If specified, the given initial model will be used to initialize the BHMM.
            Otherwise, a heuristic scheme is used to generate an initial guess.
        reversible : bool, optional, default=True
            If True, a prior that enforces reversible transition matrices (detailed balance) is used;
            otherwise, a standard  non-reversible prior is used.
        stationary : bool, optional, default=False
            If True, the stationary distribution of the transition matrix will be used as initial distribution.
            Only use True if you are confident that the observation trajectories are started from a global
            equilibrium. If False, the initial distribution will be estimated as usual from the first step
            of the hidden trajectories.
        transition_matrix_sampling_steps : int, optional, default=1000
            number of transition matrix sampling steps per BHMM cycle
        p0_prior : None, str, float or ndarray(n)
            Prior for the initial distribution of the HMM. Will only be active
            if stationary=False (stationary=True means that p0 is identical to
            the stationary distribution of the transition matrix).
            Currently implements different versions of the Dirichlet prior that
            is conjugate to the Dirichlet distribution of p0. p0 is sampled from:
            .. math:
                p0 \sim \prod_i (p0)_i^{a_i + n_i - 1}
            where :math:`n_i` are the number of times a hidden trajectory was in
            state :math:`i` at time step 0 and :math:`a_i` is the prior count.
            Following options are available:
            |  'mixed' (default),  :math:`a_i = p_{0,init}`, where :math:`p_{0,init}`
                is the initial distribution of initial_model.
            |  'uniform',  :math:`a_i = 1`
            |  ndarray(n) or float,
                the given array will be used as A.
            |  None,  :math:`a_i = 0`. This option ensures coincidence between
                sample mean an MLE. Will sooner or later lead to sampling problems,
                because as soon as zero trajectories are drawn from a given state,
                the sampler cannot recover and that state will never serve as a starting
                state subsequently. Only recommended in the large data regime and
                when the probability to sample zero trajectories from any state
                is negligible.
        transition_matrix_prior : str or ndarray(n, n)
            Prior for the HMM transition matrix.
            Currently implements Dirichlet priors if reversible=False and reversible
            transition matrix priors as described in [1]_ if reversible=True. For the
            nonreversible case the posterior of transition matrix :math:`P` is:
            .. math:
                P \sim \prod_{i,j} p_{ij}^{b_{ij} + c_{ij} - 1}
            where :math:`c_{ij}` are the number of transitions found for hidden
            trajectories and :math:`b_{ij}` are prior counts.
            |  'mixed' (default),  :math:`b_{ij} = p_{ij,init}`, where :math:`p_{ij,init}`
                is the transition matrix of initial_model. That means one prior
                count will be used per row.
            |  'uniform',  :math:`b_{ij} = 1`
            |  ndarray(n, n) or broadcastable,
                the given array will be used as B.
            |  None,  :math:`b_ij = 0`. This option ensures coincidence between
                sample mean an MLE. Will sooner or later lead to sampling problems,
                because as soon as a transition :math:`ij` will not occur in a
                sample, the sampler cannot recover and that transition will never
                be sampled again. This option is not recommended unless you have
                a small HMM and a lot of data.
        output_model_type : str, optional, default='gaussian'
            Output model type.  ['gaussian', 'discrete']

        References
        ----------
        .. [1] Trendelkamp-Schroer, B., H. Wu, F. Paul and F. Noe:
            Estimation and uncertainty of reversible Markov models.
            J. Chem. Phys. 143, 174101 (2015).

        """
        # Sanity checks.
        if len(observations) == 0:
            raise Exception("No observations were provided.")

        # Store options.
        self.reversible = reversible
        self.stationary = stationary

        # Store the number of states.
        self.nstates = nstates

        # Store a copy of the observations.
        self.observations = copy.deepcopy(observations)
        self.nobs = len(observations)
        self.Ts = [len(o) for o in observations]
        self.maxT = np.max(self.Ts)

        # initial model
        if initial_model:
            # Use user-specified initial model, if provided.
            self.model = copy.deepcopy(initial_model)
        else:
            # Generate our own initial model.
            self.model = self._generateInitialModel(output)

        # prior initial vector
        if p0_prior is None or p0_prior == 'sparse':
            self.prior_n0 = np.zeros(self.nstates)
        elif isinstance(p0_prior, np.ndarray):
            if len(p0_prior.shape) == 1 and p0_prior.shape[0] == self.nstates:
                self.prior_n0 = np.array(p0_prior)
            else:
                raise ValueError(
                    'initial distribution prior must have dimension ' +
                    str(nstates))
        elif p0_prior == 'mixed':
            self.prior_n0 = np.array(self.model.initial_distribution)
        elif p0_prior == 'uniform':
            self.prior_n0 = np.ones(nstates)
        else:
            raise ValueError('initial distribution prior mode undefined: ' +
                             str(p0_prior))

        # prior count matrix
        if transition_matrix_prior is None or p0_prior == 'sparse':
            self.prior_C = np.zeros((self.nstates, self.nstates))
        elif isinstance(transition_matrix_prior, np.ndarray):
            if np.array_equal(transition_matrix_prior.shape,
                              (self.nstates, self.nstates)):
                self.prior_C = np.array(transition_matrix_prior)
        elif transition_matrix_prior == 'mixed':
            self.prior_C = np.array(self.model.transition_matrix)
        elif p0_prior == 'uniform':
            self.prior_C = np.ones((nstates, nstates))
        else:
            raise ValueError('transition matrix prior mode undefined: ' +
                             str(transition_matrix_prior))

        # check if we work with these options
        if reversible:
            if not _tmatrix_disconnected.is_connected(
                    self.model.transition_matrix + self.prior_C, strong=True):
                raise NotImplementedError(
                    'Trying to sample disconnected HMM with option reversible:\n '
                    + str(self.model.transition_matrix) +
                    '\nUse prior to connect, select connected subset, or use reversible=False.'
                )

        # sampling options
        self.transition_matrix_sampling_steps = transition_matrix_sampling_steps

        # implementation options
        hidden.set_implementation(config.kernel)
        self.model.output_model.set_implementation(config.kernel)

        # pre-construct hidden variables
        self.alpha = np.zeros((self.maxT, self.nstates),
                              config.dtype,
                              order='C')
        self.pobs = np.zeros((self.maxT, self.nstates),
                             config.dtype,
                             order='C')

        return
Exemplo n.º 6
0
    def __init__(
        self,
        observations,
        nstates,
        initial_model=None,
        reversible=True,
        stationary=False,
        transition_matrix_sampling_steps=1000,
        p0_prior="mixed",
        transition_matrix_prior="mixed",
        output="gaussian",
    ):
        """Initialize a Bayesian hidden Markov model sampler.

        Parameters
        ----------
        observations : list of numpy arrays representing temporal data
            `observations[i]` is a 1d numpy array corresponding to the observed trajectory index `i`
        nstates : int
            The number of states in the model.
        initial_model : HMM, optional, default=None
            If specified, the given initial model will be used to initialize the BHMM.
            Otherwise, a heuristic scheme is used to generate an initial guess.
        reversible : bool, optional, default=True
            If True, a prior that enforces reversible transition matrices (detailed balance) is used;
            otherwise, a standard  non-reversible prior is used.
        stationary : bool, optional, default=False
            If True, the stationary distribution of the transition matrix will be used as initial distribution.
            Only use True if you are confident that the observation trajectories are started from a global
            equilibrium. If False, the initial distribution will be estimated as usual from the first step
            of the hidden trajectories.
        transition_matrix_sampling_steps : int, optional, default=1000
            number of transition matrix sampling steps per BHMM cycle
        p0_prior : None, str, float or ndarray(n)
            Prior for the initial distribution of the HMM. Will only be active
            if stationary=False (stationary=True means that p0 is identical to
            the stationary distribution of the transition matrix).
            Currently implements different versions of the Dirichlet prior that
            is conjugate to the Dirichlet distribution of p0. p0 is sampled from:
            .. math:
                p0 \sim \prod_i (p0)_i^{a_i + n_i - 1}
            where :math:`n_i` are the number of times a hidden trajectory was in
            state :math:`i` at time step 0 and :math:`a_i` is the prior count.
            Following options are available:
            |  'mixed' (default),  :math:`a_i = p_{0,init}`, where :math:`p_{0,init}`
                is the initial distribution of initial_model.
            |  'uniform',  :math:`a_i = 1`
            |  ndarray(n) or float,
                the given array will be used as A.
            |  None,  :math:`a_i = 0`. This option ensures coincidence between
                sample mean an MLE. Will sooner or later lead to sampling problems,
                because as soon as zero trajectories are drawn from a given state,
                the sampler cannot recover and that state will never serve as a starting
                state subsequently. Only recommended in the large data regime and
                when the probability to sample zero trajectories from any state
                is negligible.
        transition_matrix_prior : str or ndarray(n, n)
            Prior for the HMM transition matrix.
            Currently implements Dirichlet priors if reversible=False and reversible
            transition matrix priors as described in [1]_ if reversible=True. For the
            nonreversible case the posterior of transition matrix :math:`P` is:
            .. math:
                P \sim \prod_{i,j} p_{ij}^{b_{ij} + c_{ij} - 1}
            where :math:`c_{ij}` are the number of transitions found for hidden
            trajectories and :math:`b_{ij}` are prior counts.
            |  'mixed' (default),  :math:`b_{ij} = p_{ij,init}`, where :math:`p_{ij,init}`
                is the transition matrix of initial_model. That means one prior
                count will be used per row.
            |  'uniform',  :math:`b_{ij} = 1`
            |  ndarray(n, n) or broadcastable,
                the given array will be used as B.
            |  None,  :math:`b_ij = 0`. This option ensures coincidence between
                sample mean an MLE. Will sooner or later lead to sampling problems,
                because as soon as a transition :math:`ij` will not occur in a
                sample, the sampler cannot recover and that transition will never
                be sampled again. This option is not recommended unless you have
                a small HMM and a lot of data.
        output_model_type : str, optional, default='gaussian'
            Output model type.  ['gaussian', 'discrete']

        References
        ----------
        .. [1] Trendelkamp-Schroer, B., H. Wu, F. Paul and F. Noe:
            Estimation and uncertainty of reversible Markov models.
            J. Chem. Phys. 143, 174101 (2015).

        """
        # Sanity checks.
        if len(observations) == 0:
            raise Exception("No observations were provided.")

        # Store options.
        self.reversible = reversible
        self.stationary = stationary

        # Store the number of states.
        self.nstates = nstates

        # Store a copy of the observations.
        self.observations = copy.deepcopy(observations)
        self.nobs = len(observations)
        self.Ts = [len(o) for o in observations]
        self.maxT = np.max(self.Ts)

        # initial model
        if initial_model:
            # Use user-specified initial model, if provided.
            self.model = copy.deepcopy(initial_model)
        else:
            # Generate our own initial model.
            self.model = self._generateInitialModel(output)

        # prior initial vector
        if p0_prior is None or p0_prior == "sparse":
            self.prior_n0 = np.zeros(self.nstates)
        elif isinstance(p0_prior, np.ndarray):
            if np.array_equal(p0_prior.shape, self.nstates):
                self.prior_n0 = np.array(p0_prior)
        elif p0_prior == "mixed":
            self.prior_n0 = np.array(self.model.initial_distribution)
        elif p0_prior == "uniform":
            self.prior_n0 = np.ones(nstates)
        else:
            raise ValueError("initial distribution prior mode undefined: " + str(p0_prior))

        # prior count matrix
        if transition_matrix_prior is None or p0_prior == "sparse":
            self.prior_C = np.zeros((self.nstates, self.nstates))
        elif isinstance(transition_matrix_prior, np.ndarray):
            if np.array_equal(transition_matrix_prior.shape, (self.nstates, self.nstates)):
                self.prior_C = np.array(transition_matrix_prior)
        elif transition_matrix_prior == "mixed":
            self.prior_C = np.array(self.model.transition_matrix)
        elif p0_prior == "uniform":
            self.prior_C = np.ones((nstates, nstates))
        else:
            raise ValueError("transition matrix prior mode undefined: " + str(transition_matrix_prior))

        # check if we work with these options
        if reversible:
            if not _tmatrix_disconnected.is_connected(self.model.transition_matrix + self.prior_C, strong=True):
                raise NotImplementedError(
                    "Trying to sample disconnected HMM with option reversible:\n "
                    + str(self.model.transition_matrix)
                    + "\nUse prior to connect, select connected subset, or use reversible=False."
                )

        # sampling options
        self.transition_matrix_sampling_steps = transition_matrix_sampling_steps

        # implementation options
        hidden.set_implementation(config.kernel)
        self.model.output_model.set_implementation(config.kernel)

        # pre-construct hidden variables
        self.alpha = np.zeros((self.maxT, self.nstates), config.dtype, order="C")
        self.pobs = np.zeros((self.maxT, self.nstates), config.dtype, order="C")

        return
Exemplo n.º 7
0
 def is_weakly_connected(self):
     r""" Whether the HMM transition matrix is weakly connected """
     return _tmatrix_disconnected.is_connected(self._Tij, strong=False)
Exemplo n.º 8
0
 def is_strongly_connected(self):
     r""" Whether the HMM transition matrix is strongly connected """
     return _tmatrix_disconnected.is_connected(self._Tij, strong=True)
Exemplo n.º 9
0
 def is_weakly_connected(self):
     r""" Whether the HMM transition matrix is weakly connected """
     return _tmatrix_disconnected.is_connected(self._Tij, strong=False)
Exemplo n.º 10
0
 def is_strongly_connected(self):
     r""" Whether the HMM transition matrix is strongly connected """
     return _tmatrix_disconnected.is_connected(self._Tij, strong=True)