Exemplo n.º 1
0
 def tensor(self): # TODO: This shouldn't be public
     if self._tensor is not None:
         return self._tensor
     header = self.header
     shape = header['_tensor']['shape']
     ringlet_shape, frame_shape = split_shape(shape)
     nringlet       = reduce(lambda x, y: x * y, ringlet_shape, 1)
     frame_nelement = reduce(lambda x, y: x * y, frame_shape,   1)
     dtype = header['_tensor']['dtype']
     try:
         dtype = dtype.decode()
     except AttributeError:
         # Python2 catch
         pass
     nbit = DataType(dtype).itemsize_bits
     assert(nbit % 8 == 0)
     frame_nbyte = frame_nelement * nbit // 8
     self._tensor = {}
     self._tensor['dtype']         = DataType(dtype)
     self._tensor['ringlet_shape'] = ringlet_shape
     self._tensor['nringlet']      = nringlet
     self._tensor['frame_shape']   = frame_shape
     self._tensor['frame_nbyte']   = frame_nbyte
     self._tensor['dtype_nbyte']   = nbit // 8
     return self._tensor
Exemplo n.º 2
0
 def on_sequence(self, iseq):
     ihdr = iseq.header
     itensor = ihdr['_tensor']
     itype = DataType(itensor['dtype'])
     if not itype.is_complex:
         raise TypeError("Input data must be complex")
     self.axis = self.specified_axis
     if 'labels' not in itensor.keys() and self.axis is None:
         raise TypeError(
             "Polarization (pol) index must be labelled, or axis must be set manually"
         )
     elif (self.axis is None and self.mode != 'scalar'
           and 'pol' in itensor['labels']):
         self.axis = itensor['labels'].index('pol')
     elif isinstance(self.axis, str):
         self.axis = itensor['labels'].index(self.axis)
     # Note: axis may be None here, which indicates single-pol mode
     ohdr = deepcopy(ihdr)
     otensor = ohdr['_tensor']
     if self.axis is not None:
         self.npol = otensor['shape'][self.axis]
         if self.npol not in [1, 2]:
             raise ValueError("Axis must have length 1 or 2")
         if self.mode == 'stokes' and self.npol == 2:
             otensor['shape'][self.axis] = 4
         if 'labels' in otensor:
             otensor['labels'][self.axis] = 'pol'
     else:
         self.npol = 1
     if self.mode == 'jones' and self.npol == 2:
         otype = itype
     else:
         otype = itype.as_real()
     otensor['dtype'] = otype.as_floating_point()
     return ohdr
Exemplo n.º 3
0
    def on_sequence(self, iseq):
        ihdr = iseq.header
        itensor = ihdr['_tensor']
        # TODO: DataType cast should be done inside ring2
        #         **This tensor stuff generally needs to be cleaned up
        itype = DataType(itensor['dtype'])
        # TODO: This is slightly hacky; it needs to emulate the type casting
        #         that Bifrost does internally for the FFT.
        itype = itype.as_floating_point()

        # Get axis indices, allowing for lookup-by-label
        self.axes = [
            itensor['labels'].index(axis)
            if isinstance(axis, basestring) else axis
            for axis in self.specified_axes
        ]

        axes = self.axes
        shape = [itensor['shape'][ax] for ax in axes]

        otype = itype.as_real() if self.real_output else itype.as_complex()
        ohdr = deepcopy(ihdr)
        otensor = ohdr['_tensor']
        otensor['dtype'] = str(otype)
        if itype.is_real and otype.is_complex:
            self.mode = 'r2c'
        elif itype.is_complex and otype.is_real:
            self.mode = 'c2r'
        else:
            self.mode = 'c2c'
        frame_axis = itensor['shape'].index(-1)
        if frame_axis in axes:
            raise KeyError(
                "Cannot transform frame axis; reshape the data stream first")

        # Adjust output shape for real transforms
        if self.mode == 'r2c':
            otensor['shape'][axes[-1]] //= 2
            otensor['shape'][axes[-1]] += 1
        elif self.mode == 'c2r':
            otensor['shape'][axes[-1]] -= 1
            otensor['shape'][axes[-1]] *= 2
            shape[-1] -= 1
            shape[-1] *= 2

        for i, (ax, length) in enumerate(zip(axes, shape)):
            if 'units' in otensor:
                units = otensor['units'][ax]
                otensor['units'][ax] = transform_units(units, -1)
            if 'scales' in otensor:
                otensor['scales'][ax][0] = 0  # TODO: Is this OK?
                scale = otensor['scales'][ax][1]
                otensor['scales'][ax][1] = 1. / (scale * length)
            if 'labels' in otensor and self.axis_labels is not None:
                otensor['labels'][ax] = self.axis_labels[i]
        self.nframe = 0
        self.istride = 0
        self.ostride = 0
        return ohdr
Exemplo n.º 4
0
 def header_transform(hdr, new_dtype=dtype):
     tensor = hdr['_tensor']
     old_dtype = tensor['dtype']
     old_itemsize = DataType(old_dtype).itemsize
     new_itemsize = DataType(new_dtype).itemsize
     old_axissize = old_itemsize * tensor['shape'][-1]
     if old_axissize % new_itemsize:
         raise ValueError("New type not compatible with data shape")
     tensor['shape'][-1] = old_axissize // new_itemsize
     tensor['dtype'] = dtype
     return hdr
Exemplo n.º 5
0
 def on_sequence(self, iseq):
     ihdr = iseq.header
     ohdr = deepcopy(ihdr)
     itype = DataType(ihdr['_tensor']['dtype'])
     self.itype = itype
     # Allow user to pass nbit instead of explicit dtype
     if isinstance(self.dtype, int):
         nbit = self.dtype
         otype = itype.as_nbit(nbit)
     else:
         otype = self.dtype
     ohdr['_tensor']['dtype'] = otype
     return ohdr
Exemplo n.º 6
0
 def view(self, dtype=None, type_=None):
     if type_ is not None:
         dtype = type
     type_type = type(int) # HACK to form an instance of 'type' (very confusing)
     if isinstance(dtype, type_type) and issubclass(dtype, np.ndarray):
         return super(ndarray, self).view(dtype)
     else:
         # TODO: Endianness changes are not supported here
         #         Consider building byteorder into DataType
         dtype_bf = DataType(dtype)
         dtype_np = np.dtype(dtype_bf.as_numpy_dtype())
         v = super(ndarray, self).view(dtype_np)
         v.bf.dtype = dtype_bf
         v._update_BFarray()
         return v
Exemplo n.º 7
0
    def data_view(self, dtype=np.uint8, shape=-1):
        itemsize = DataType(dtype).itemsize
        assert (self.size % itemsize == 0)
        assert (self.stride % itemsize == 0)
        data_ptr = self._data_ptr
        #if self.sequence.ring.space == 'cuda':
        #    # TODO: See if can wrap this in something like PyCUDA's GPUArray
        #    #         Ideally actual GPUArray, but it doesn't appear to support wrapping pointers
        #    #           Could also try writing a custom GPUArray implem for this purpose
        #    return data_ptr
        span_size = self.size
        nringlet = self.nringlet
        #print("******", span_size, stride, nringlet)
        #BufferType = c_byte*(span_size*self.stride)
        # TODO: We should really map the actual ring memory space and index
        #         it with offset rather than mapping from the current pointer.
        _shape = (nringlet, span_size // itemsize)
        strides = (self.stride, itemsize) if nringlet > 1 else None
        space = self.ring.space

        data_array = ndarray(shape=_shape,
                             strides=strides,
                             buffer=data_ptr,
                             dtype=dtype,
                             space=space)

        # Note: This is a non-standard attribute
        #data_array.flags['SPACE'] = space
        if not self.writeable:
            data_array.flags['WRITEABLE'] = False
        if shape != -1:
            # TODO: Check that this still wraps the same memory
            data_array = data_array.reshape(shape)
        return data_array
Exemplo n.º 8
0
 def __array_finalize__(self, obj):
     if obj is None:
         # Already initialized self.bf in __new__
         return
     # Initialize as view of existing array
     if isinstance(obj, ndarray):
         # Copy metadata from existing bf.ndarray
         self.bf = BFArrayInfo(obj.bf.space, obj.bf.dtype,
                               obj.bf.native, obj.bf.conjugated)
     else:
         # Generate metadata from existing np.ndarray
         #*space      = str(Space(raw_get_space(obj.ctypes.data)))
         # Note: Assumes that any existing np.ndarray is in system space
         space      = 'system'
         #dtype      = str(DataType(obj.dtype))
         # **TODO: Decide on bf.dtype being DataType vs. string (and same for space)
         dtype      = DataType(obj.dtype)
         native     = obj.dtype.isnative
         conjugated = False
         self.bf = BFArrayInfo(space, dtype, native, conjugated)
     self._update_BFarray()
Exemplo n.º 9
0
    def on_sequence(self, iseq):
        ihdr = iseq.header
        itensor = ihdr['_tensor']

        axnames = tuple(itensor['labels'])
        shape = itensor['shape']
        scales = itensor['scales']
        units = itensor['units']
        ndim = len(shape)
        dtype = DataType(itensor['dtype'])

        nchan = shape[-1]
        sample_time = convert_units(scales[-2][1], units[-2], 's')
        sample_rate = int(round(1. / sample_time))
        frame_nbyte = nchan * dtype.itemsize
        ohdr = {
            'audio_fmt': 1,  # 1 => PCM (linear quantization, uncompressed)
            'nchan': nchan,
            'sample_rate': sample_rate,
            'byte_rate': sample_rate * frame_nbyte,
            'block_align': frame_nbyte,
            'nbit': dtype.itemsize_bits
        }
        filename = os.path.join(self.path, ihdr['name'])

        if ndim == 2 and axnames[-2] == 'time':
            self.ofile = open(filename + '.wav', 'wb')
            wav_write_header(self.ofile, ohdr)
        elif ndim == 3 and axnames[-2] == 'time':
            nfile = shape[-3]
            filenames = [filename + '.%09i.tim' % i for i in range(nfile)]
            self.ofiles = [open(fname + '.wav', 'wb') for fname in filenames]
            for ofile in self.ofiles:
                wav_write_header(ofile, ohdr)
        else:
            raise ValueError("Incompatible axes: " + str(axnames))
Exemplo n.º 10
0
 def on_data(self, ispan, ospan):
     idata = ispan.data
     odata = ospan.data
     itype = DataType(idata.dtype)
     otype = DataType(odata.dtype)
     if self.ifmt == 'matrix' and self.ofmt == 'matrix':
         # Make a full-matrix copy of the lower-only input matrix
         # odata[t,c,i,p,j,q] = idata[t,c,i,p,j,q] (lower filled only)
         shape_nopols = list(idata.shape)
         del shape_nopols[5]
         del shape_nopols[3]
         idata = idata.view(itype.as_vector(2))
         odata = odata.view(otype.as_vector(2))
         bf.map('''
             bool in_lower_triangle = (i > j);
             if( in_lower_triangle ) {
                 odata(t,c,i,0,j,0) = idata(t,c,i,0,j,0);
                 odata(t,c,i,1,j,0) = idata(t,c,i,1,j,0);
             } else {
                 auto x = idata(t,c,j,0,i,0);
                 auto y = idata(t,c,j,1,i,0);
                 auto x1 = x[1];
                 x[0] = x[0].conj();
                 x[1] = y[0].conj();
                 if( i != j ) {
                     y[0] = x1.conj();
                 }
                 y[1] = y[1].conj();
                 odata(t,c,i,0,j,0) = x;
                 odata(t,c,i,1,j,0) = y;
             }
             ''',
                shape=shape_nopols,
                axis_names=['t', 'c', 'i', 'j'],
                data={
                    'idata': idata,
                    'odata': odata
                })
     elif self.ifmt == 'matrix' and self.ofmt == 'storage':
         assert (idata.shape[2] <= 2048)
         idata = idata.view(itype.as_vector(2))
         odata = odata.view(otype.as_vector(4))
         # TODO: Support L/R as well as X/Y pols
         bf.map('''
         // TODO: This only works up to 2048 in single-precision
         #define project_triangular(i, j) ((i)*((i)+1)/2 + (j))
         int i = int((sqrt(8.f*(b)+1)-1)/2);
         int j = b - project_triangular(i, 0);
         auto x = idata(t,c,i,0,j,0);
         auto y = idata(t,c,i,1,j,0);
         if( i == j ) {
             x[1] = y[0].conj();
         }
         idata_type::value_type eye(0, 1);
         auto I = (x[0] + y[1]);
         auto Q = (x[0] - y[1]);
         auto U = (x[1] + y[0]);
         auto V = (x[1] - y[0]) * eye;
         odata(t,b,c,0) = odata_type(I,Q,U,V);
         ''',
                shape=odata.shape[:-1],
                axis_names=['t', 'b', 'c'],
                data={
                    'idata': idata,
                    'odata': odata
                },
                block_shape=[64, 8])  # TODO: Tune this
     #elif self.ifmt == 'matrix' and self.ofmt == 'triangular':
     elif self.ifmt == 'storage' and self.ofmt == 'matrix':
         oshape_nopols = list(odata.shape)
         del oshape_nopols[5]
         del oshape_nopols[3]
         idata = idata.view(itype.as_vector(4))
         odata = odata.view(otype.as_vector(2))
         bf.map('''
         bool in_upper_triangle = (i < j);
         auto b = in_upper_triangle ? j*(j+1)/2 + i : i*(i+1)/2 + j;
         auto IQUV = idata(t,b,c,0);
         auto I = IQUV[0], Q = IQUV[1], U = IQUV[2], V = IQUV[3];
         idata_type::value_type eye(0, 1);
         auto xx = 0.5f*(I + Q);
         auto xy = 0.5f*(U - V*eye);
         auto yx = 0.5f*(U + V*eye);
         auto yy = 0.5f*(I - Q);
         if( i == j ) {
             xy = yx.conj();
         }
         if( in_upper_triangle ) {
             auto tmp_xy = xy;
             xx = xx.conj();
             xy = yx.conj();
             yx = tmp_xy.conj();
             yy = yy.conj();
         }
         odata(t,c,i,0,j,0) = odata_type(xx, xy);
         odata(t,c,i,1,j,0) = odata_type(yx, yy);
         ''',
                shape=oshape_nopols,
                axis_names=['t', 'c', 'i', 'j'],
                data={
                    'idata': idata,
                    'odata': odata
                },
                block_shape=[64, 8])  # TODO: Tune this
     else:
         raise NotImplementedError
Exemplo n.º 11
0
    def on_sequence(self, iseq):
        ihdr = iseq.header
        itensor = ihdr['_tensor']

        axnames = list(itensor['labels'])
        shape = list(itensor['shape'])
        scales = list(itensor['scales'])
        units = list(itensor['units'])
        ndim = len(shape)
        dtype = DataType(itensor['dtype'])

        sigproc_hdr = {}
        _copy_item_if_exists(sigproc_hdr, ihdr, 'source_name')
        _copy_item_if_exists(sigproc_hdr, ihdr, 'rawdatafile')
        _copy_item_if_exists(sigproc_hdr, ihdr, 'az_start')
        _copy_item_if_exists(sigproc_hdr, ihdr, 'za_start')
        _copy_item_if_exists(sigproc_hdr, ihdr, 'raj', 'src_raj')
        _copy_item_if_exists(sigproc_hdr, ihdr, 'dej', 'src_dej')
        if 'telescope' in ihdr:
            sigproc_hdr['telescope_id'] = sigproc.telescope2id(
                ihdr['telescope'])
        if 'machine' in ihdr:
            sigproc_hdr['machine_id'] = sigproc.machine2id(ihdr['machine'])
        _copy_item_if_exists(sigproc_hdr, ihdr, 'telescope_id')
        _copy_item_if_exists(sigproc_hdr, ihdr, 'machine_id')
        _copy_item_if_exists(sigproc_hdr, ihdr, 'ibeam')
        _copy_item_if_exists(sigproc_hdr, ihdr, 'nbeams')
        sigproc_hdr['nbits'] = dtype.itemsize_bits
        _copy_item_if_exists(sigproc_hdr, ihdr, 'barycentric')
        _copy_item_if_exists(sigproc_hdr, ihdr, 'pulsarcentric')
        if dtype.is_integer and dtype.is_signed:
            sigproc_hdr['signed'] = True
        if 'coord_frame' in ihdr:
            coord_frame = ihdr['coord_frame']
        else:
            coord_frame = None
        sigproc_hdr['pulsarcentric'] = (coord_frame == 'pulsarcentric')
        sigproc_hdr['barycentric'] = (coord_frame == 'barycentric')

        filename = os.path.join(self.path, ihdr['name'])

        if ndim >= 3 and axnames[-3:] == ['time', 'pol', 'freq']:
            self.data_format = 'filterbank'
            assert (dtype.is_real)
            sigproc_hdr['data_type'] = 1
            sigproc_hdr['nifs'] = shape[-2]
            sigproc_hdr['nchans'] = shape[-1]
            sigproc_hdr['tstart'] = _unix2mjd(scales[-3][0])
            sigproc_hdr['tsamp'] = convert_units(scales[-3][1], units[-3], 's')
            sigproc_hdr['fch1'] = convert_units(scales[-1][0], units[-1],
                                                'MHz')
            sigproc_hdr['foff'] = convert_units(scales[-1][1], units[-1],
                                                'MHz')
            if 'refdm' in ihdr:
                sigproc_hdr['refdm'] = convert_units(ihdr['refdm'],
                                                     ihdr['refdm_units'],
                                                     'pc cm^-3')
            if ndim == 3:
                filename += '.fil'
                self.ofile = open(filename, 'wb')
                sigproc.write_header(sigproc_hdr, self.ofile)
            elif ndim == 4:
                if axnames[-4] != 'beam':
                    raise ValueError("Expected first axis to be 'beam'"
                                     " got '%s'" % axnames[-4])
                nbeam = shape[-4]
                sigproc_hdr['nbeams'] = nbeam
                filenames = [
                    filename + '.%06iof.%06i.fil' % (b + 1, nbeam)
                    for b in range(nbeam)
                ]
                self.ofiles = [open(fname, 'wb') for fname in filenames]
                for b in range(nbeam):
                    sigproc_hdr['ibeam'] = b
                    sigproc.write_header(sigproc_hdr, self.ofiles[b])
            else:
                raise ValueError("Too many dimensions")

        elif ndim >= 2 and 'time' in axnames and 'pol' in axnames:
            pol_axis = axnames.index('pol')
            if pol_axis != ndim - 1:
                # Need to move pol axis
                # Note: We support this because it tends to be convenient
                #         for rest of the pipeline to operate with pol being
                #         the first dim, and doing the transpose on the fly
                #         inside this block is unlikely to cost much relative
                #         to disk perf (and it's free if npol==1).
                axnames.append(axnames[pol_axis])
                del axnames[pol_axis]
                shape.append(shape[pol_axis])
                del shape[pol_axis]
                scales.append(scales[pol_axis])
                del scales[pol_axis]
                units.append(units[pol_axis])
                del units[pol_axis]
            self.pol_axis = pol_axis
            self.data_format = 'timeseries'
            assert (dtype.is_real)
            sigproc_hdr['data_type'] = 2
            sigproc_hdr['nchans'] = 1
            sigproc_hdr['nifs'] = shape[-2]
            sigproc_hdr['tstart'] = _unix2mjd(scales[-2][0])
            sigproc_hdr['tsamp'] = convert_units(scales[-2][1], units[-2], 's')
            if 'cfreq' in ihdr and 'bw' in ihdr:
                sigproc_hdr['fch1'] = convert_units(ihdr['cfreq'],
                                                    ihdr['cfreq_units'], 'MHz')
                sigproc_hdr['foff'] = convert_units(ihdr['bw'],
                                                    ihdr['bw_units'], 'MHz')
            # TODO: Write ndim separate output files, each with its own refdm
            if ndim == 2:
                if 'refdm' in ihdr:
                    sigproc_hdr['refdm'] = convert_units(
                        ihdr['refdm'], ihdr['refdm_units'], 'pc cm^-3')
                filename += '.tim'
                self.ofile = open(filename, 'wb')
                sigproc.write_header(sigproc_hdr, self.ofile)
            elif ndim == 3:
                if axnames[-3] != 'dispersion':
                    raise ValueError("Expected first axis to be 'dispersion'"
                                     " got '%s'" % axnames[-3])
                ndm = shape[-3]
                dm0 = scales[-3][0]
                ddm = scales[-3][1]
                dms = [dm0 + ddm * d for d in range(ndm)]
                dms = [convert_units(dm, units[-3], 'pc cm^-3') for dm in dms]
                filenames = [filename + '.%09.2f.tim' % dm for dm in dms]
                self.ofiles = [open(fname, 'wb') for fname in filenames]
                for d, dm in enumerate(dms):
                    sigproc_hdr['refdm'] = dm
                    sigproc.write_header(sigproc_hdr, self.ofiles[d])
            else:
                raise ValueError("Too many dimensions")

        elif ndim == 4 and axnames[-3:] == ['pol', 'freq', 'phase']:
            self.data_format = 'pulseprofile'
            assert (dtype.is_real)
            sigproc_hdr['data_type'] = 2
            sigproc_hdr['nifs'] = shape[-3]
            sigproc_hdr['nchans'] = shape[-2]
            sigproc_hdr['nbins'] = shape[-1]
            sigproc_hdr['tstart'] = _unix2mjd(scales[-4][0])
            sigproc_hdr['tsamp'] = convert_units(scales[-4][1], units[-4], 's')
            sigproc_hdr['fch1'] = convert_units(scales[-2][0], units[-2],
                                                'MHz')
            sigproc_hdr['foff'] = convert_units(scales[-2][1], units[-2],
                                                'MHz')
            if 'refdm' in ihdr:
                sigproc_hdr['refdm'] = convert_units(ihdr['refdm'],
                                                     ihdr['refdm_units'],
                                                     'pc cm^-3')
            _copy_item_if_exists(sigproc_hdr, ihdr, 'npuls')
            self.filename = filename
            self.sigproc_hdr = sigproc_hdr
            self.t0 = scales[-4][0]
            self.dt = scales[-4][1]

        else:
            raise ValueError(
                "Axis labels do not correspond to a known data format: " +
                str(axnames) + "\nKnown formats are:" +
                "\n  [time, pol, freq]\n  [beam, time, pol]\n" +
                "  [time, pol]\n  [dispersion, time, pol]\n" +
                "  [pol, freq, phase]")
Exemplo n.º 12
0
    def on_sequence(self, iseq):
        ihdr = iseq.header
        itensor = ihdr['_tensor']

        axnames = tuple(itensor['labels'])
        shape = itensor['shape']
        scales = itensor['scales']
        units = itensor['units']
        ndim = len(shape)
        dtype = DataType(itensor['dtype'])

        sigproc_hdr = {}
        copy_item_if_exists(sigproc_hdr, ihdr, 'source_name')
        copy_item_if_exists(sigproc_hdr, ihdr, 'rawdatafile')
        copy_item_if_exists(sigproc_hdr, ihdr, 'az_start')
        copy_item_if_exists(sigproc_hdr, ihdr, 'za_start')
        copy_item_if_exists(sigproc_hdr, ihdr, 'raj', 'src_raj')
        copy_item_if_exists(sigproc_hdr, ihdr, 'dej', 'src_dej')
        if 'telescope' in ihdr:
            sigproc_hdr['telescope_id'] = sigproc.telescope2id(
                ihdr['telescope'])
        if 'machine' in ihdr:
            sigproc_hdr['machine_id'] = sigproc.machine2id(ihdr['machine'])
        copy_item_if_exists(sigproc_hdr, ihdr, 'telescope_id')
        copy_item_if_exists(sigproc_hdr, ihdr, 'machine_id')
        copy_item_if_exists(sigproc_hdr, ihdr, 'ibeam')
        copy_item_if_exists(sigproc_hdr, ihdr, 'nbeams')
        sigproc_hdr['nbits'] = dtype.itemsize_bits
        copy_item_if_exists(sigproc_hdr, ihdr, 'barycentric')
        copy_item_if_exists(sigproc_hdr, ihdr, 'pulsarcentric')
        if dtype.is_integer and dtype.is_signed:
            sigproc_hdr['signed'] = True
        if 'coord_frame' in ihdr:
            coord_frame = ihdr['coord_frame']
        else:
            coord_frame = None
        sigproc_hdr['pulsarcentric'] = (coord_frame == 'pulsarcentric')
        sigproc_hdr['barycentric'] = (coord_frame == 'barycentric')

        filename = os.path.join(self.path, ihdr['name'])

        if ndim >= 3 and axnames[-3:] == ('time', 'pol', 'freq'):
            self.data_format = 'filterbank'
            assert (dtype.is_real)
            sigproc_hdr['data_type'] = 1
            sigproc_hdr['nifs'] = shape[-2]
            sigproc_hdr['nchans'] = shape[-1]
            sigproc_hdr['tstart'] = unix2mjd(scales[-3][0])
            sigproc_hdr['tsamp'] = convert_units(scales[-3][1], units[-3], 's')
            sigproc_hdr['fch1'] = convert_units(scales[-1][0], units[-1],
                                                'MHz')
            sigproc_hdr['foff'] = convert_units(scales[-1][1], units[-1],
                                                'MHz')
            if 'refdm' in ihdr:
                sigproc_hdr['refdm'] = convert_units(ihdr['refdm'],
                                                     ihdr['refdm_units'],
                                                     'pc cm^-3')
            if ndim == 3:
                filename += '.fil'
                self.ofile = open(filename, 'wb')
                sigproc.write_header(sigproc_hdr, self.ofile)
            elif ndim == 4:
                if axnames[-4] != 'beam':
                    raise ValueError("Expected first axis to be 'beam'")
                nbeam = shape[-4]
                sigproc_hdr['nbeams'] = nbeam
                filenames = [
                    filename + '.%06iof.%06i.fil' % (b + 1, nbeam)
                    for b in xrange(nbeam)
                ]
                self.ofiles = [open(fname, 'wb') for fname in filenames]
                for b in xrange(nbeam):
                    sigproc_hdr['ibeam'] = b
                    sigproc.write_header(sigproc_hdr, self.ofiles[b])
            else:
                raise ValueError("Too many dimensions")

        elif ndim >= 2 and axnames[-2:] == ('time', 'pol'):
            self.data_format = 'timeseries'
            assert (dtype.is_real)
            sigproc_hdr['data_type'] = 2
            sigproc_hdr['nchans'] = 1
            sigproc_hdr['nifs'] = shape[-2]
            sigproc_hdr['tstart'] = unix2mjd(scales[-2][0])
            sigproc_hdr['tsamp'] = convert_units(scales[-2][1], units[-2], 's')
            if 'cfreq' in ihdr and 'bw' in ihdr:
                sigproc_hdr['fch1'] = convert_units(ihdr['cfreq'],
                                                    ihdr['cfreq_units'], 'MHz')
                sigproc_hdr['foff'] = convert_units(ihdr['bw'],
                                                    ihdr['bw_units'], 'MHz')
            # TODO: Write ndim separate output files, each with its own refdm
            if ndim == 2:
                if 'refdm' in ihdr:
                    sigproc_hdr['refdm'] = convert_units(
                        ihdr['refdm'], ihdr['refdm_units'], 'pc cm^-3')
                filename += '.tim'
                self.ofile = open(filename, 'wb')
                sigproc.write_header(sigproc_hdr, self.ofile)
            elif ndim == 3:
                if axnames[-3] != 'dispersion measure':
                    raise ValueError(
                        "Expected first axis to be 'dispersion measure'")
                ndm = shape[-3]
                dm0 = scales[-3][0]
                ddm = scales[-3][1]
                dms = [dm0 + ddm * d for d in xrange(ndm)]
                dms = [convert_units(dm, units[-3], 'pc cm^-3') for dm in dms]
                filenames = [filename + '.%09.2f.tim' % dm for dm in dms]
                self.ofiles = [open(fname, 'wb') for fname in filenames]
                for d, dm in enumerate(dms):
                    sigproc_hdr['refdm'] = dm
                    sigproc.write_header(sigproc_hdr, self.ofiles[d])
            else:
                raise ValueError("Too many dimensions")

        elif ndim == 4 and axnames[-3:] == ('pol', 'freq', 'phase'):
            self.data_format = 'pulseprofile'
            assert (dtype.is_real)
            sigproc_hdr['data_type'] = 2
            sigproc_hdr['nifs'] = shape[-3]
            sigproc_hdr['nchans'] = shape[-2]
            sigproc_hdr['nbins'] = shape[-1]
            sigproc_hdr['tstart'] = unix2mjd(scales[-4][0])
            sigproc_hdr['tsamp'] = convert_units(scales[-4][1], units[-4], 's')
            sigproc_hdr['fch1'] = convert_units(scales[-2][0], units[-2],
                                                'MHz')
            sigproc_hdr['foff'] = convert_units(scales[-2][1], units[-2],
                                                'MHz')
            if 'refdm' in ihdr:
                sigproc_hdr['refdm'] = convert_units(ihdr['refdm'],
                                                     ihdr['refdm_units'],
                                                     'pc cm^-3')
            copy_item_if_exists(sigproc_hdr, ihdr, 'npuls')
            self.filename = filename
            self.sigproc_hdr = sigproc_hdr
            self.t0 = scales[-4][0]
            self.dt = scales[-4][1]

        else:
            raise ValueError(
                "Axis labels do not correspond to a known data format: " +
                str(axnames))
Exemplo n.º 13
0
    def __new__(cls, base=None, space=None, shape=None, dtype=None,
                buffer=None, offset=0, strides=None,
                native=None, conjugated=None):
        if isinstance(shape, int):
            shape = [shape]
        ownbuffer = None
        if base is not None:
            if (shape is not None or
                # dtype is not None or
                buffer is not None or
                offset != 0 or
                strides is not None or
                native is not None):
                raise ValueError('Invalid combination of arguments when base '
                                 'is specified')
            if 'cupy' in sys.modules:
                from cupy import ndarray as cupy_ndarray
                if isinstance(base, cupy_ndarray):
                     return ndarray.__new__(cls,
                                            space='cuda',
                                            buffer=int(base.data),
                                            shape=base.shape,
                                            dtype=base.dtype,
                                            strides=base.strides,
                                            native=np.dtype(base.dtype).isnative)
            if 'pycuda' in sys.modules:
                from pycuda.gpuarray import GPUArray as pycuda_GPUArray
                if isinstance(base, pycuda_GPUArray):
                    return ndarray.__new__(cls,
                                           space='cuda',
                                           buffer=int(base.gpudata),
                                           shape=base.shape,
                                           dtype=base.dtype,
                                           strides=base.strides,
                                           native=np.dtype(base.dtype).isnative)
            if dtype is not None:
                dtype = DataType(dtype)
            if space is None and dtype is None:
                if not isinstance(base, np.ndarray):
                    base = np.asarray(base)
                # TODO: This may not be a good idea
                # Create view of base array
                obj = base.view(cls) # Note: This calls obj.__array_finalize__
                # Allow conjugated to be redefined
                if conjugated is not None:
                    obj.bf.conjugated = conjugated
                    obj._update_BFarray()
            else:
                if not isinstance(base, np.ndarray):
                    # Convert base to np.ndarray
                    if dtype is not None:
                        base = np.array(base,
                                        dtype=DataType(dtype).as_numpy_dtype())
                    else:
                        base = np.array(base)
                if not isinstance(base, ndarray) and dtype is not None:
                    base = base.astype(dtype.as_numpy_dtype())
                base = ndarray(base) # View base as bf.ndarray
                if dtype is not None and base.bf.dtype != dtype:
                    raise TypeError('Unable to convert type %s to %s during '
                                    'array construction' %
                                    (base.bf.dtype, dtype))
                #base = base.view(cls
                #if dtype is not None:
                #    base = base.astype(DataType(dtype).as_numpy_dtype())
                if conjugated is None:
                    conjugated = base.bf.conjugated
                # Create copy of base array
                obj = ndarray.__new__(cls,
                                      space=space,
                                      shape=base.shape,
                                      dtype=base.bf.dtype,
                                      strides=base.strides,
                                      native=base.bf.native,
                                      conjugated=conjugated)
                copy_array(obj, base)
        else:
            # Create new array
            if dtype is None:
                dtype = 'f32' # Default dtype
            dtype = DataType(dtype)
            if native is None:
                native = True # Default byteorder
            if conjugated is None:
                conjugated = False # Default unconjugated
            if strides is None:
                #itemsize = dtype.itemsize
                itemsize_bits = dtype.itemsize_bits
                # HACK to support 'packed' arrays, by folding the last
                #   dimension of the shape into the dtype.
                # TODO: Consider using bit strides when dtype < 8 bits
                #         It's hacky, but it may be worth it
                if itemsize_bits < 8:
                    pack_factor = 8 // itemsize_bits
                    if shape[-1] % pack_factor != 0 or not len(shape):
                        raise ValueError("Array cannot be packed")
                    shape = list(shape)
                    shape[-1] //= pack_factor
                    itemsize = 1
                else:
                    itemsize = itemsize_bits // 8

                if len(shape):
                    # This magic came from http://stackoverflow.com/a/32874295
                    strides = (itemsize *
                               np.r_[1, np.cumprod(shape[::-1][:-1],
                                                   dtype=np.int64)][::-1])
                    strides = tuple(strides)
                else:
                    strides = tuple()
            nbyte = strides[0] * shape[0] if len(shape) else itemsize
            if buffer is None:
                # Allocate new buffer
                if space is None:
                    space = 'system' # Default space
                if shape is None:
                    raise ValueError('Either buffer or shape must be '
                                     'specified')
                ownbuffer = raw_malloc(nbyte, space)
                buffer = ownbuffer
            else:
                if space is None:
                    #space = _get(_bf.bfGetSpace(buffer))
                    # TODO: raw_get_space should probably return string, and needs a better name
                    space = str(Space(raw_get_space(buffer)))
            # TODO: Should move np.dtype() into as_numpy_dtype?
            dtype_np = np.dtype(dtype.as_numpy_dtype())
            if not native:
                dtype_np = dtype_np.newbyteorder()
            data_buffer = _address_as_buffer(buffer, nbyte)
            obj = np.ndarray.__new__(cls, shape, dtype_np,
                                     data_buffer, offset, strides)
            obj.bf = BFArrayInfo(space, dtype, native, conjugated, ownbuffer)
            obj._update_BFarray()
        return obj