Exemplo n.º 1
0
    def test_multiple_sequences(self):
        """Try to send multiple sequences through a branching pipeline"""

        def generate_different_arrays():
            """Yield four different groups of two arrays"""
            dtypes = ['float32', 'float64', 'complex64', 'int8']
            shapes = [(4,), (4, 5), (4, 5, 6), (2,) * 8]
            for array_index in range(4):
                yield np.ones(
                    shape=shapes[array_index],
                    dtype=dtypes[array_index])
                yield 2 * np.ones(
                    shape=shapes[array_index],
                    dtype=dtypes[array_index])

        def switch_types(array):
            """Return two copies of the array, one with a different type"""
            return np.copy(array), np.copy(array).astype(np.complex128)

        self.occurences = 0
        def compare_arrays(array1, array2):
            """Make sure that all arrays coming in are equal"""
            self.occurences += 1
            np.testing.assert_almost_equal(array1, array2)

        blocks = [
            (NumpySourceBlock(generate_different_arrays), {'out_1': 0}),
            (NumpyBlock(switch_types, outputs=2), {'in_1': 0, 'out_1': 1, 'out_2': 2}),
            (NumpyBlock(np.fft.fft), {'in_1': 2, 'out_1': 3}),
            (NumpyBlock(np.fft.ifft), {'in_1': 3, 'out_1': 4}),
            (NumpyBlock(compare_arrays, inputs=2, outputs=0), {'in_1': 1, 'in_2': 4})]

        Pipeline(blocks).main()
        self.assertEqual(self.occurences, 8)
Exemplo n.º 2
0
    def test_multi_header_output(self):
        """Output multiple arrays and headers to fill up rings"""
        def generate_array_and_header():
            """Output the desired header of an array"""
            header_1 = {'dtype': 'complex128', 'nbit': 128}
            header_2 = {'dtype': 'complex64', 'nbit': 64}
            yield (
                np.array([1, 2, 3, 4]), header_1,
                np.array([1, 2]), header_2)

        def assert_expectation(array1, array2):
            "Assert that the arrays have different complex datatypes"
            np.testing.assert_almost_equal(array1, [1, 2, 3, 4])
            np.testing.assert_almost_equal(array2, [1, 2])
            self.assertEqual(array1.dtype, np.dtype('complex128'))
            self.assertEqual(array2.dtype, np.dtype('complex64'))
            self.occurences += 1

        blocks = []
        blocks.append((
            NumpySourceBlock(generate_array_and_header, outputs=2, grab_headers=True),
            {'out_1': 0, 'out_2': 1}))
        blocks.append((
            NumpyBlock(assert_expectation, inputs=2, outputs=0),
            {'in_1': 0, 'in_2': 1}))

        Pipeline(blocks).main()
        self.assertEqual(self.occurences, 1)
Exemplo n.º 3
0
 def test_different_types(self):
     """Try to output different type arrays"""
     def generate_different_type_arrays():
         """Put out arrays of different types"""
         arrays = []
         for array_type in ['float32', 'float64', 'int8', 'uint8']:
             numpy_type = np.dtype(array_type).type
             arrays.append(np.array([1, 2, 3, 4]).astype(numpy_type))
         arrays.append(np.array([1 + 10j]))
         yield arrays
     def assert_expectation(*args):
         """Assert the arrays are as expected"""
         self.occurences += 1
         self.assertEqual(len(args), 5)
         for index, array_type in enumerate(['float32', 'float64', 'int8', 'uint8']):
             self.assertTrue(str(args[index].dtype) == array_type)
             np.testing.assert_almost_equal(args[index], [1, 2, 3, 4])
         np.testing.assert_almost_equal(args[-1], np.array([1 + 10j]))
     blocks = []
     blocks.append((
         NumpySourceBlock(generate_different_type_arrays, outputs=5),
         {'out_%d' % (i + 1): i for i in range(5)}))
     blocks.append((
         NumpyBlock(assert_expectation, inputs=5, outputs=0),
         {'in_%d' % (i + 1): i for i in range(5)}))
     Pipeline(blocks).main()
     self.assertEqual(self.occurences, 1)
Exemplo n.º 4
0
    def test_output_change(self):
        """Change the output of the source, and expect new sequence"""
        self.occurences = 0

        def generate_different_arrays():
            """Yield two different arrays"""
            yield np.array([1, 2])
            yield np.array([1, 2, 3])

        def assert_change(array):
            """Assert the input arrays change"""
            if self.occurences == 0:
                np.testing.assert_almost_equal(array, [1, 2])
            else:
                np.testing.assert_almost_equal(array, [1, 2, 3])
            self.occurences += 1

        blocks = [(NumpySourceBlock(generate_different_arrays), {
            'out_1': 0
        }), (NumpyBlock(np.copy), {
            'in_1': 0,
            'out_1': 1
        }), (NumpyBlock(assert_change, outputs=0), {
            'in_1': 1
        })]

        Pipeline(blocks).main()
        self.assertEqual(self.occurences, 2)
Exemplo n.º 5
0
    def test_two_sequences(self):
        """Make sure multiple sequences only triggered for different headers"""

        np.random.seed(44)

        def generate_two_different_arrays():
            """Generate 10 of an array shape, then 10 of a different array shape"""
            for _ in range(10):
                yield np.random.rand(4)
            for _ in range(10):
                yield np.random.rand(5)

        self.triggered = False
        self.monitor_block = None
        self.sequence_id = ""
        self.i = 0

        #This array holds all of the
        #starting numbers. If there
        #are more than two different
        #numbers, then there is a problem
        self.all_sequence_starts = []

        def monitor_block_sequences(array):
            """Read the newest sequence, and append the first
               byte to the all_sequence_starts"""

            #Avoid reading an empty sequence
            if self.i > 1 and self.i < 11:
                with self.monitor_block.rings['out_1'].open_latest_sequence(
                        guarantee=False) as curr_seq:
                    span_gen = curr_seq.read(1)
                    self.all_sequence_starts.append(int(
                        next(span_gen).data[0]))
            if self.i > 12:
                with self.monitor_block.rings['out_1'].open_latest_sequence(
                        guarantee=False) as curr_seq:
                    span_gen = curr_seq.read(1)
                    self.all_sequence_starts.append(int(
                        next(span_gen).data[0]))
            self.i += 1
            return array

        self.monitor_block = NumpyBlock(monitor_block_sequences)
        blocks = [(NumpySourceBlock(generate_two_different_arrays), {
            'out_1': 0
        }), (self.monitor_block, {
            'in_1': 0,
            'out_1': 1
        })]

        Pipeline(blocks).main()

        unique_starts = len(set(self.all_sequence_starts))
        self.assertEqual(unique_starts, 2)
Exemplo n.º 6
0
 def test_simple_single_generation(self):
     """For single yields, should act like a TestingBlock"""
     def generate_one_array():
         """Put out a single numpy array"""
         yield np.array([1, 2, 3, 4]).astype(np.float32)
     def assert_expectation(array):
         """Assert the array is as expected"""
         np.testing.assert_almost_equal(array, [1, 2, 3, 4])
         self.occurences += 1
     blocks = []
     blocks.append((NumpySourceBlock(generate_one_array), {'out_1': 0}))
     blocks.append((NumpyBlock(assert_expectation, outputs=0), {'in_1': 0}))
     Pipeline(blocks).main()
     self.assertEqual(self.occurences, 1)
Exemplo n.º 7
0
 def test_multiple_yields(self):
     """Should be able to repeat generation of an array"""
     def generate_10_arrays():
         """Put out 10 numpy arrays"""
         for _ in range(10):
             yield np.array([1, 2, 3, 4]).astype(np.float32)
     def assert_expectation(array):
         """Assert the array is as expected"""
         np.testing.assert_almost_equal(array, [1, 2, 3, 4])
         self.occurences += 1
     blocks = []
     blocks.append((NumpySourceBlock(generate_10_arrays), {'out_1': 0}))
     blocks.append((NumpyBlock(assert_expectation, outputs=0), {'in_1': 0}))
     Pipeline(blocks).main()
     self.assertEqual(self.occurences, 10)
Exemplo n.º 8
0
 def test_header_output(self):
     """Output a header for a ring explicitly"""
     def generate_array_and_header():
         """Output the desired header of an array"""
         header = {'dtype': 'complex128', 'nbit': 128}
         yield np.array([1, 2, 3, 4]), header
     def assert_expectation(array):
         "Assert that the array has a complex datatype"
         np.testing.assert_almost_equal(array, [1, 2, 3, 4])
         self.assertEqual(array.dtype, np.dtype('complex128'))
         self.occurences += 1
     blocks = []
     blocks.append((
         NumpySourceBlock(generate_array_and_header, grab_headers=True),
         {'out_1': 0}))
     blocks.append((NumpyBlock(assert_expectation, outputs=0), {'in_1': 0}))
     Pipeline(blocks).main()
     self.assertEqual(self.occurences, 1)
Exemplo n.º 9
0
 def test_multiple_output_rings(self):
     """Multiple output ring test."""
     def generate_many_arrays():
         """Put out 10x10 numpy arrays"""
         for _ in range(10):
             yield (np.array([1, 2, 3, 4]).astype(np.float32),) * 10
     def assert_expectation(*args):
         """Assert the arrays are as expected"""
         assert len(args) == 10
         for array in args:
             np.testing.assert_almost_equal(array, [1, 2, 3, 4])
         self.occurences += 1
     blocks = []
     blocks.append((
         NumpySourceBlock(generate_many_arrays, outputs=10),
         {'out_%d' % (i + 1): i for i in range(10)}))
     blocks.append((
         NumpyBlock(assert_expectation, inputs=10, outputs=0),
         {'in_%d' % (i + 1): i for i in range(10)}))
     Pipeline(blocks).main()
     self.assertEqual(self.occurences, 10)