Exemplo n.º 1
0
    def create_correlation(self, dataset, args=None, wait_time=3, retries=10):
        """Creates a correlation from a `dataset`.

        """
        dataset_id = None
        resource_type = get_resource_type(dataset)
        if resource_type == DATASET_PATH:
            dataset_id = get_dataset_id(dataset)
            check_resource(dataset_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time,
                           retries=retries,
                           raise_on_error=True,
                           api=self)
        else:
            raise Exception("A dataset id is needed to create a"
                            " correlation. %s found." % resource_type)

        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({"dataset": dataset_id})

        body = json.dumps(create_args)
        return self._create(self.correlation_url, body)
Exemplo n.º 2
0
    def create_anomaly_score(self, anomaly, input_data=None,
                             args=None, wait_time=3, retries=10):
        """Creates a new anomaly score.

        """
        anomaly_id = None
        resource_type = get_resource_type(anomaly)
        if resource_type == ANOMALY_PATH:
            anomaly_id = get_anomaly_id(anomaly)
            check_resource(anomaly_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time, retries=retries,
                           raise_on_error=True, api=self)
        else:
            raise Exception("An anomaly detector id is needed to create an"
                            " anomaly score. %s found." % resource_type)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({
            "input_data": input_data})
        create_args.update({
            "anomaly": anomaly_id})

        body = json.dumps(create_args)
        return self._create(self.anomaly_score_url, body,
                            verify=self.verify)
Exemplo n.º 3
0
    def create_forecast(self, time_series, input_data=None,
                        args=None, wait_time=3, retries=10):
        """Creates a new forecast.

        """
        time_series_id = get_time_series_id(time_series)
        resource_type = get_resource_type(time_series_id)
        if resource_type == TIME_SERIES_PATH and time_series_id is not None:
            check_resource(time_series_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time, retries=retries,
                           raise_on_error=True, api=self)
        else:
            raise Exception("A time series model id is needed to create a"
                            " forecast. %s found." % resource_type)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({
            "input_data": input_data})
        if time_series_id is not None:
            create_args.update({
                "timeseries": time_series_id})

        body = json.dumps(create_args)
        return self._create(self.forecast_url, body,
                            verify=self.verify_prediction)
Exemplo n.º 4
0
    def create_anomaly_score(self,
                             anomaly,
                             input_data=None,
                             args=None,
                             wait_time=3,
                             retries=10):
        """Creates a new anomaly score.

        """
        anomaly_id = None
        resource_type = get_resource_type(anomaly)
        if resource_type == ANOMALY_PATH:
            anomaly_id = get_anomaly_id(anomaly)
            check_resource(anomaly_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time,
                           retries=retries,
                           raise_on_error=True,
                           api=self)
        else:
            raise Exception("An anomaly detector id is needed to create an"
                            " anomaly score. %s found." % resource_type)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({"input_data": input_data})
        create_args.update({"anomaly": anomaly_id})

        body = json.dumps(create_args)
        return self._create(self.anomaly_score_url, body, verify=self.verify)
Exemplo n.º 5
0
    def create_topic_distribution(self, topic_model, input_data=None,
                                  args=None, wait_time=3, retries=10):
        """Creates a new topic distribution.

        """
        topic_model_id = get_topic_model_id(topic_model)
        if topic_model_id is not None:
            check_resource(topic_model_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time, retries=retries,
                           raise_on_error=True, api=self)
        else:
            resource_type = get_resource_type(topic_model)
            raise Exception("A topic model id is needed to create a"
                            " topic distribution. %s found." % resource_type)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({
            "input_data": input_data,
            "topicmodel": topic_model_id})

        body = json.dumps(create_args)
        return self._create(self.topic_distribution_url, body,
                            verify=self.verify_prediction)
Exemplo n.º 6
0
    def create_association_set(self, association, input_data=None,
                               args=None, wait_time=3, retries=10):
        """Creates a new association set.

        """
        association_id = None
        resource_type = get_resource_type(association)
        if resource_type == ASSOCIATION_PATH:
            association_id = get_association_id(association)
            check_resource(association_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time, retries=retries,
                           raise_on_error=True, api=self)
        else:
            raise Exception("A association id is needed to create an"
                            " association set. %s found." % resource_type)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({
            "input_data": input_data})
        create_args.update({
            "association": association_id})

        body = json.dumps(create_args)
        return self._create(self.association_set_url, body,
                            verify=self.verify)
Exemplo n.º 7
0
    def create_forecast(self, time_series, input_data=None,
                        args=None, wait_time=3, retries=10):
        """Creates a new forecast.

        """
        time_series_id = get_time_series_id(time_series)
        resource_type = get_resource_type(time_series_id)
        if resource_type == TIME_SERIES_PATH and time_series_id is not None:
            check_resource(time_series_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time, retries=retries,
                           raise_on_error=True, api=self)
        else:
            raise Exception("A time series model id is needed to create a"
                            " forecast. %s found." % resource_type)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({
            "input_data": input_data})
        if time_series_id is not None:
            create_args.update({
                "timeseries": time_series_id})

        body = json.dumps(create_args)
        return self._create(self.forecast_url, body,
                            verify=self.verify_prediction)
Exemplo n.º 8
0
    def create_centroid(self, cluster, input_data=None,
                        args=None, wait_time=3, retries=10):
        """Creates a new centroid.

        """
        cluster_id = None
        resource_type = get_resource_type(cluster)
        if resource_type == CLUSTER_PATH:
            cluster_id = get_cluster_id(cluster)
            check_resource(cluster_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time, retries=retries,
                           raise_on_error=True, api=self)
        else:
            raise Exception("A cluster id is needed to create a"
                            " centroid. %s found." % resource_type)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({
            "input_data": input_data})
        create_args.update({
            "cluster": cluster_id})

        body = json.dumps(create_args)
        return self._create(self.centroid_url, body,
                            verify=self.verify)
Exemplo n.º 9
0
    def create_projection(self, pca, input_data=None,
                          args=None, wait_time=3, retries=10):
        """Creates a new projection.
           The pca parameter can be a pca resource or ID

        """
        pca_id = None

        resource_type = get_resource_type(pca)
        if resource_type != PCA_PATH:
            raise Exception("A PCA resource id is needed"
                            " to create a projection. %s found." %
                            resource_type)

        pca_id = get_resource_id(pca)
        if pca_id is not None:
            check_resource(pca_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time, retries=retries,
                           raise_on_error=True, api=self)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({
            "input_data": input_data})
        if pca_id is not None:
            create_args.update({
                "pca": pca_id})

        body = json.dumps(create_args)
        return self._create(self.projection_url, body,
                            verify=self.verify)
Exemplo n.º 10
0
    def create_script(self,
                      source_code=None,
                      args=None,
                      wait_time=3,
                      retries=10):
        """Creates a whizzml script from its source code. The `source_code`
           parameter can be a:
            {script ID}: the ID for an existing whizzml script
            {path}: the path to a file containing the source code
            {string} : the string containing the source code for the script

        """
        create_args = {}
        if args is not None:
            create_args.update(args)

        if source_code is None:
            raise Exception('A valid code string'
                            ' or a script id must be provided.')
        resource_type = get_resource_type(source_code)
        if resource_type == SCRIPT_PATH:
            script_id = get_script_id(source_code)
            if script_id:
                check_resource(script_id,
                               query_string=TINY_RESOURCE,
                               wait_time=wait_time,
                               retries=retries,
                               raise_on_error=True,
                               api=self)
                create_args.update({"origin": script_id})
        elif isinstance(source_code, basestring):
            if is_url(source_code):
                script_args = retrieve_script_args(source_code)
                source_code = script_args.get("source_code")
                create_args.update(json.loads(script_args.get("json")))
            else:
                try:
                    if os.path.exists(source_code):
                        with open(source_code) as code_file:
                            source_code = code_file.read()
                except IOError:
                    raise IOError("Could not open the source code file %s." %
                                  source_code)
            create_args.update({"source_code": source_code})
        else:
            raise Exception("A script id or a valid source code"
                            " is needed to create a"
                            " script. %s found." % resource_type)

        body = json.dumps(create_args)
        return self._create(self.script_url, body)
Exemplo n.º 11
0
    def create_prediction(self, model, input_data=None, args=None, wait_time=3, retries=10, by_name=True):
        """Creates a new prediction.
           The model parameter can be:
            - a simple model
            - an ensemble
           The by_name argument is now deprecated. It will be removed.

        """
        ensemble_id = None
        model_id = None

        resource_type = get_resource_type(model)
        if resource_type == ENSEMBLE_PATH:
            ensemble_id = get_ensemble_id(model)
            if ensemble_id is not None:
                check_resource(
                    ensemble_id,
                    query_string=TINY_RESOURCE,
                    wait_time=wait_time,
                    retries=retries,
                    raise_on_error=True,
                    api=self,
                )
        elif resource_type == MODEL_PATH:
            model_id = get_model_id(model)
            check_resource(
                model_id,
                query_string=TINY_RESOURCE,
                wait_time=wait_time,
                retries=retries,
                raise_on_error=True,
                api=self,
            )
        else:
            raise Exception("A model or ensemble id is needed to create a" " prediction. %s found." % resource_type)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({"input_data": input_data})
        if ensemble_id is None:
            create_args.update({"model": model_id})
        else:
            create_args.update({"ensemble": ensemble_id})

        body = json.dumps(create_args)
        return self._create(self.prediction_url, body, verify=self.verify_prediction)
Exemplo n.º 12
0
    def create_execution(self,
                         origin_resource,
                         args=None,
                         wait_time=3,
                         retries=10):
        """Creates an execution from a `script` or a list of `scripts`.

        """

        create_args = {}
        if args is not None:
            create_args.update(args)

        if (isinstance(origin_resource, basestring)
                or isinstance(origin_resource, dict)):
            # single script
            scripts = [origin_resource]
        else:
            scripts = origin_resource
        try:
            script_ids = [get_script_id(script) for script in scripts]
        except TypeError:
            raise Exception("A script id or a list of them is needed to create"
                            " a script execution. %s found." %
                            get_resource_type(origin_resource))

        if all([
                get_resource_type(script_id) == SCRIPT_PATH
                for script_id in script_ids
        ]):
            for script in scripts:
                check_resource(script,
                               query_string=TINY_RESOURCE,
                               wait_time=wait_time,
                               retries=retries,
                               raise_on_error=True,
                               api=self)
        else:
            raise Exception("A script id or a list of them is needed to create"
                            " a script execution. %s found." %
                            get_resource_type(origin_resource))

        if len(scripts) > 1:
            create_args.update({"scripts": script_ids})
        else:
            create_args.update({"script": script_ids[0]})

        body = json.dumps(create_args)
        return self._create(self.execution_url, body)
Exemplo n.º 13
0
    def error_counts(self, dataset, raise_on_error=True):
        """Returns the ids of the fields that contain errors and their number.

           The dataset argument can be either a dataset resource structure
           or a dataset id (that will be used to retrieve the associated
           remote resource).

        """
        errors_dict = {}
        if not isinstance(dataset, dict) or 'object' not in dataset:
            check_resource_type(dataset, DATASET_PATH,
                                message="A dataset id is needed.")
            dataset_id = get_dataset_id(dataset)
            dataset = check_resource(dataset_id, self.get_dataset,
                                     raise_on_error=raise_on_error)
            if not raise_on_error and dataset['error'] is not None:
                dataset_id = None
        else:
            dataset_id = get_dataset_id(dataset)
        if dataset_id:
            errors = dataset.get('object', {}).get(
                'status', {}).get('field_errors', {})
            for field_id in errors:
                errors_dict[field_id] = errors[field_id]['total']
        return errors_dict
Exemplo n.º 14
0
    def retrieve_resource(self, resource_id, query_string=None,
                          check_local_fn=None, retries=None):
        """ Retrieves resource info either from the local repo or
            from the remote server

        """
        if query_string is None:
            query_string = ''
        if self.storage is not None:
            try:
                stored_resource = os.path.join(self.storage,
                                              resource_id.replace("/", "_"))
                with open(stored_resource) as resource_file:
                    resource = json.loads(resource_file.read())
                # we check that the stored resource has the information
                # needed (for instance, input_fields for predicting)
                if check_local_fn is None or check_local_fn(resource):
                    return resource
            except ValueError:
                raise ValueError("The file %s contains no JSON")
            except IOError:
                pass
        if self.auth == '?username=;api_key=;':
            raise ValueError("The credentials information is missing. This"
                             " information is needed to download resource %s"
                             " for the first time and store it locally for further"
                             " use. Please export BIGML_USERNAME"
                             " and BIGML_API_KEY."  % resource_id)
        api_getter = self.getters[get_resource_type(resource_id)]
        resource = check_resource(resource_id, api_getter, query_string,
                                  retries=retries)
        return resource
Exemplo n.º 15
0
    def error_counts(self, dataset, raise_on_error=True):
        """Returns the ids of the fields that contain errors and their number.

           The dataset argument can be either a dataset resource structure
           or a dataset id (that will be used to retrieve the associated
           remote resource).

        """
        errors_dict = {}
        if not isinstance(dataset, dict) or not 'object' in dataset:
            check_resource_type(dataset,
                                DATASET_PATH,
                                message="A dataset id is needed.")
            dataset_id = get_dataset_id(dataset)
            dataset = check_resource(dataset_id,
                                     self.get_dataset,
                                     raise_on_error=raise_on_error)
            if not raise_on_error and dataset['error'] is not None:
                dataset_id = None
        else:
            dataset_id = get_dataset_id(dataset)
        if dataset_id:
            errors = dataset.get('object', {}).get('status',
                                                   {}).get('field_errors', {})
            for field_id in errors:
                errors_dict[field_id] = errors[field_id]['total']
        return errors_dict
Exemplo n.º 16
0
    def create_prediction(self,
                          model,
                          input_data=None,
                          args=None,
                          wait_time=3,
                          retries=10):
        """Creates a new prediction.
           The model parameter can be:
            - a simple tree model
            - a simple logistic regression model
            - an ensemble
            - a deepnet
            . a linear regression
            - a fusion
           Note that the old `by_name` argument has been deprecated.

        """
        model_id = None

        resource_type = get_resource_type(model)
        if resource_type not in SUPERVISED_PATHS:
            raise Exception("A supervised model resource id is needed"
                            " to create a prediction. %s found." %
                            resource_type)

        model_id = get_resource_id(model)
        if model_id is not None:
            check_resource(model_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time,
                           retries=retries,
                           raise_on_error=True,
                           api=self)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({"input_data": input_data})
        if model_id is not None:
            create_args.update({"model": model_id})

        body = json.dumps(create_args)
        return self._create(self.prediction_url,
                            body,
                            verify=self.verify_prediction)
Exemplo n.º 17
0
    def create_prediction(self, model, input_data=None,
                          args=None, wait_time=3, retries=10, by_name=True):
        """Creates a new prediction.
           The model parameter can be:
            - a simple model
            - an ensemble
           The by_name argument is now deprecated. It will be removed.

        """
        ensemble_id = None
        model_id = None

        resource_type = get_resource_type(model)
        if resource_type == ENSEMBLE_PATH:
            ensemble_id = get_ensemble_id(model)
            if ensemble_id is not None:
                check_resource(ensemble_id,
                               query_string=TINY_RESOURCE,
                               wait_time=wait_time, retries=retries,
                               raise_on_error=True, api=self)
        elif resource_type == MODEL_PATH:
            model_id = get_model_id(model)
            check_resource(model_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time, retries=retries,
                           raise_on_error=True, api=self)
        else:
            raise Exception("A model or ensemble id is needed to create a"
                            " prediction. %s found." % resource_type)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({
            "input_data": input_data})
        if ensemble_id is None:
            create_args.update({
                "model": model_id})
        else:
            create_args.update({
                "ensemble": ensemble_id})

        body = json.dumps(create_args)
        return self._create(self.prediction_url, body,
                            verify=self.verify_prediction)
Exemplo n.º 18
0
    def check_resource(self, resource,
                       query_string='', wait_time=1):
        """Check resource method.

        """
        return check_resource(resource,
                              query_string=query_string, wait_time=wait_time,
                              api=self)
Exemplo n.º 19
0
    def check_resource(self, resource,
                       query_string='', wait_time=1):
        """Check resource method.

        """
        return check_resource(resource,
                              query_string=query_string, wait_time=wait_time,
                              api=self)
Exemplo n.º 20
0
    def create_library(self,
                       source_code=None,
                       args=None,
                       wait_time=3,
                       retries=10):
        """Creates a whizzml library from its source code. The `source_code`
           parameter can be a:
            {library ID}: the ID for an existing whizzml library
            {path}: the path to a file containing the source code
            {string} : the string containing the source code for the library

        """
        create_args = {}
        if args is not None:
            create_args.update(args)

        if source_code is None:
            raise Exception('A valid code string'
                            ' or a library id must be provided.')
        resource_type = get_resource_type(source_code)
        if resource_type == LIBRARY_PATH:
            library_id = get_library_id(source_code)
            if library_id:
                check_resource(library_id,
                               query_string=TINY_RESOURCE,
                               wait_time=wait_time,
                               retries=retries,
                               raise_on_error=True,
                               api=self)
                create_args.update({"origin": library_id})
        elif isinstance(source_code, basestring):
            try:
                if os.path.exists(source_code):
                    with open(source_code) as code_file:
                        source_code = code_file.read()
            except IOError:
                raise IOError("Could not open the source code file %s." %
                              source_code)
            create_args.update({"source_code": source_code})
        else:
            raise Exception("A library id or a valid source code"
                            " is needed to create a"
                            " library. %s found." % resource_type)

        body = json.dumps(create_args)
        return self._create(self.library_url, body)
Exemplo n.º 21
0
    def create_execution(self, origin_resource, args=None,
                         wait_time=3, retries=10):
        """Creates an execution from a `script` or a list of `scripts`.

        """

        create_args = {}
        if args is not None:
            create_args.update(args)

        if (isinstance(origin_resource, basestring) or
                isinstance(origin_resource, dict)):
            # single script
            scripts = [origin_resource]
        else:
            scripts = origin_resource
        try:
            script_ids = [get_script_id(script) for script in scripts]
        except TypeError:
            raise Exception("A script id or a list of them is needed to create"
                            " a script execution. %s found." %
                            get_resource_type(origin_resource))

        if all([get_resource_type(script_id) == SCRIPT_PATH for
                script_id in script_ids]):
            for script in scripts:
                check_resource(script,
                               query_string=TINY_RESOURCE,
                               wait_time=wait_time, retries=retries,
                               raise_on_error=True, api=self)
        else:
            raise Exception("A script id or a list of them is needed to create"
                            " a script execution. %s found." %
                            get_resource_type(origin_resource))

        if len(scripts) > 1:
            create_args.update({
                "scripts": script_ids})
        else:
            create_args.update({
                "script": script_ids[0]})

        body = json.dumps(create_args)
        return self._create(self.execution_url, body)
Exemplo n.º 22
0
    def create_library(self, source_code=None, args=None,
                       wait_time=3, retries=10):
        """Creates a whizzml library from its source code. The `source_code`
           parameter can be a:
            {library ID}: the ID for an existing whizzml library
            {path}: the path to a file containing the source code
            {string} : the string containing the source code for the library

        """
        create_args = {}
        if args is not None:
            create_args.update(args)

        if source_code is None:
            raise Exception('A valid code string'
                            ' or a library id must be provided.')
        resource_type = get_resource_type(source_code)
        if resource_type == LIBRARY_PATH:
            library_id = get_library_id(source_code)
            if library_id:
                check_resource(library_id,
                               query_string=TINY_RESOURCE,
                               wait_time=wait_time, retries=retries,
                               raise_on_error=True, api=self)
                create_args.update({
                    "origin": library_id})
        elif isinstance(source_code, basestring):
            try:
                if os.path.exists(source_code):
                    with open(source_code) as code_file:
                        source_code = code_file.read()
            except IOError:
                raise IOError("Could not open the source code file %s." %
                              source_code)
            create_args.update({
                "source_code": source_code})
        else:
            raise Exception("A library id or a valid source code"
                            " is needed to create a"
                            " library. %s found." % resource_type)


        body = json.dumps(create_args)
        return self._create(self.library_url, body)
Exemplo n.º 23
0
    def create_model(self, origin_resource, args=None, wait_time=3, retries=10):
        """Creates a model from an origin_resource.

        Uses a remote resource to create a new model using the
        arguments in `args`.
        The allowed remote resources can be:
            - dataset
            - list of datasets
            - cluster
        In the case of using cluster id as origin_resource, a centroid must
        also be provided in the args argument. The first centroid is used
        otherwise.

        """

        create_args = {}
        if args is not None:
            create_args.update(args)
        if isinstance(origin_resource, list):
            # mutidatasets
            create_args = self._set_create_from_datasets_args(
                origin_resource, args=create_args, wait_time=wait_time,
                retries=retries)
        else:
            resource_type = get_resource_type(origin_resource)
            # model from cluster and centroid
            if resource_type == CLUSTER_PATH:
                cluster_id = get_cluster_id(origin_resource)
                cluster = check_resource(cluster_id,
                                         query_string=TINY_RESOURCE,
                                         wait_time=wait_time,
                                         retries=retries,
                                         raise_on_error=True, api=self)
                if not 'centroid' in create_args:
                    try:
                        centroid = cluster['object'][
                            'cluster_models'].keys()[0]
                        create_args.update({'centroid': centroid})
                    except KeyError:
                        raise KeyError("Failed to generate the model. A "
                                       "centroid id is needed in the args "
                                       "argument to generate a model from "
                                       "a cluster.")
                create_args.update({'cluster': cluster_id})
            elif resource_type == DATASET_PATH:
                create_args = self._set_create_from_datasets_args(
                    origin_resource, args=create_args, wait_time=wait_time,
                    retries=retries)
            else:
                raise Exception("A dataset, list of dataset ids"
                                " or cluster id plus centroid id are needed"
                                " to create a"
                                " dataset. %s found." % resource_type)

        body = json.dumps(create_args)
        return self._create(self.model_url, body)
Exemplo n.º 24
0
    def create_model(self, origin_resource, args=None, wait_time=3, retries=10):
        """Creates a model from an origin_resource.

        Uses a remote resource to create a new model using the
        arguments in `args`.
        The allowed remote resources can be:
            - dataset
            - list of datasets
            - cluster
        In the case of using cluster id as origin_resource, a centroid must
        also be provided in the args argument. The first centroid is used
        otherwise.

        """

        create_args = {}
        if args is not None:
            create_args.update(args)
        if isinstance(origin_resource, list):
            # mutidatasets
            create_args = self._set_create_from_datasets_args(
                origin_resource, args=create_args, wait_time=wait_time,
                retries=retries)
        else:
            resource_type = get_resource_type(origin_resource)
            # model from cluster and centroid
            if resource_type == CLUSTER_PATH:
                cluster_id = get_cluster_id(origin_resource)
                cluster = check_resource(cluster_id,
                                         query_string=TINY_RESOURCE,
                                         wait_time=wait_time,
                                         retries=retries,
                                         raise_on_error=True, api=self)
                if 'centroid' not in create_args:
                    try:
                        centroid = cluster['object'][
                            'cluster_models'].keys()[0]
                        create_args.update({'centroid': centroid})
                    except KeyError:
                        raise KeyError("Failed to generate the model. A "
                                       "centroid id is needed in the args "
                                       "argument to generate a model from "
                                       "a cluster.")
                create_args.update({'cluster': cluster_id})
            elif resource_type == DATASET_PATH:
                create_args = self._set_create_from_datasets_args(
                    origin_resource, args=create_args, wait_time=wait_time,
                    retries=retries)
            else:
                raise Exception("A dataset, list of dataset ids"
                                " or cluster id plus centroid id are needed"
                                " to create a"
                                " dataset. %s found." % resource_type)

        body = json.dumps(create_args)
        return self._create(self.model_url, body)
Exemplo n.º 25
0
    def create_prediction(self, model, input_data=None,
                          args=None, wait_time=3, retries=10):
        """Creates a new prediction.
           The model parameter can be:
            - a simple tree model
            - a simple logistic regression model
            - an ensemble
            - a deepnet
            . a linear regression
            - a fusion
           Note that the old `by_name` argument has been deprecated.

        """
        model_id = None

        resource_type = get_resource_type(model)
        if resource_type not in SUPERVISED_PATHS:
            raise Exception("A supervised model resource id is needed"
                            " to create a prediction. %s found." %
                            resource_type)

        model_id = get_resource_id(model)
        if model_id is not None:
            check_resource(model_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time, retries=retries,
                           raise_on_error=True, api=self)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({
            "input_data": input_data})
        if model_id is not None:
            create_args.update({
                "model": model_id})

        body = json.dumps(create_args)
        return self._create(self.prediction_url, body,
                            verify=self.verify_prediction)
Exemplo n.º 26
0
    def create_projection(self,
                          pca,
                          input_data=None,
                          args=None,
                          wait_time=3,
                          retries=10):
        """Creates a new projection.
           The pca parameter can be a pca resource or ID

        """
        pca_id = None

        resource_type = get_resource_type(pca)
        if resource_type != PCA_PATH:
            raise Exception("A PCA resource id is needed"
                            " to create a projection. %s found." %
                            resource_type)

        pca_id = get_resource_id(pca)
        if pca_id is not None:
            check_resource(pca_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time,
                           retries=retries,
                           raise_on_error=True,
                           api=self)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({"input_data": input_data})
        if pca_id is not None:
            create_args.update({"pca": pca_id})

        body = json.dumps(create_args)
        return self._create(self.projection_url, body, verify=self.verify)
Exemplo n.º 27
0
    def create_statistical_test(self, dataset, args=None, wait_time=3, retries=10):
        """Creates a statistical test from a `dataset`.

        """
        dataset_id = None
        resource_type = get_resource_type(dataset)
        if resource_type == DATASET_PATH:
            dataset_id = get_dataset_id(dataset)
            check_resource(dataset_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time, retries=retries,
                           raise_on_error=True, api=self)
        else:
            raise Exception("A dataset id is needed to create a"
                            " statistical test. %s found." % resource_type)

        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({
            "dataset": dataset_id})

        body = json.dumps(create_args)
        return self._create(self.statistical_test_url, body)
    def create_topic_distribution(self,
                                  topic_model,
                                  input_data=None,
                                  args=None,
                                  wait_time=3,
                                  retries=10):
        """Creates a new topic distribution.

        """
        topic_model_id = get_topic_model_id(topic_model)
        if topic_model_id is not None:
            check_resource(topic_model_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time,
                           retries=retries,
                           raise_on_error=True,
                           api=self)
        else:
            resource_type = get_resource_type(topic_model)
            raise Exception("A topic model id is needed to create a"
                            " topic distribution. %s found." % resource_type)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({
            "input_data": input_data,
            "topicmodel": topic_model_id
        })

        body = json.dumps(create_args)
        return self._create(self.topic_distribution_url,
                            body,
                            verify=self.verify_prediction)
Exemplo n.º 29
0
    def create_dataset(self, origin_resource, args=None,
                       wait_time=3, retries=10):
        """Creates a remote dataset.

        Uses a remote resource to create a new dataset using the
        arguments in `args`.
        The allowed remote resources can be:
            - source
            - dataset
            - list of datasets
            - cluster
        In the case of using cluster id as origin_resources, a centroid must
        also be provided in the args argument. The first centroid is used
        otherwise.
        If `wait_time` is higher than 0 then the dataset creation
        request is not sent until the `source` has been created successfuly.

        """
        create_args = {}
        if args is not None:
            create_args.update(args)

        if isinstance(origin_resource, list):
            # mutidatasets
            create_args = self._set_create_from_datasets_args(
                origin_resource, args=create_args, wait_time=wait_time,
                retries=retries, key="origin_datasets")
        else:
            # dataset from source
            resource_type = get_resource_type(origin_resource)
            if resource_type == SOURCE_PATH:
                source_id = get_source_id(origin_resource)
                if source_id:
                    check_resource(source_id,
                                   query_string=TINY_RESOURCE,
                                   wait_time=wait_time,
                                   retries=retries,
                                   raise_on_error=True, api=self)
                    create_args.update({
                        "source": source_id})
            # dataset from dataset
            elif resource_type == DATASET_PATH:
                create_args = self._set_create_from_datasets_args(
                    origin_resource, args=create_args, wait_time=wait_time,
                    retries=retries, key="origin_dataset")
            # dataset from cluster and centroid
            elif resource_type == CLUSTER_PATH:
                cluster_id = get_cluster_id(origin_resource)
                cluster = check_resource(cluster_id,
                                         query_string=TINY_RESOURCE,
                                         wait_time=wait_time,
                                         retries=retries,
                                         raise_on_error=True, api=self)
                if 'centroid' not in create_args:
                    try:
                        centroid = cluster['object'][
                            'cluster_datasets_ids'].keys()[0]
                        create_args.update({'centroid': centroid})
                    except KeyError:
                        raise KeyError("Failed to generate the dataset. A "
                                       "centroid id is needed in the args "
                                       "argument to generate a dataset from "
                                       "a cluster.")
                create_args.update({'cluster': cluster_id})
            else:
                raise Exception("A source, dataset, list of dataset ids"
                                " or cluster id plus centroid id are needed"
                                " to create a"
                                " dataset. %s found." % resource_type)

        body = json.dumps(create_args)
        return self._create(self.dataset_url, body)
Exemplo n.º 30
0
    def create_prediction(self,
                          model,
                          input_data=None,
                          args=None,
                          wait_time=3,
                          retries=10):
        """Creates a new prediction.
           The model parameter can be:
            - a simple tree model
            - a simple logistic regression model
            - an ensemble
            - a deepnet
           Note that the old `by_name` argument has been deprecated.

        """
        deepnet_id = None
        logistic_regression_id = None
        ensemble_id = None
        model_id = None

        resource_type = get_resource_type(model)
        if resource_type == ENSEMBLE_PATH:
            ensemble_id = get_ensemble_id(model)
            if ensemble_id is not None:
                check_resource(ensemble_id,
                               query_string=TINY_RESOURCE,
                               wait_time=wait_time,
                               retries=retries,
                               raise_on_error=True,
                               api=self)
        elif resource_type == MODEL_PATH:
            model_id = get_model_id(model)
            check_resource(model_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time,
                           retries=retries,
                           raise_on_error=True,
                           api=self)
        elif resource_type == LOGISTIC_REGRESSION_PATH:
            logistic_regression_id = get_logistic_regression_id(model)
            check_resource(logistic_regression_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time,
                           retries=retries,
                           raise_on_error=True,
                           api=self)
        elif resource_type == DEEPNET_PATH:
            deepnet_id = get_deepnet_id(model)
            check_resource(deepnet_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time,
                           retries=retries,
                           raise_on_error=True,
                           api=self)
        else:
            raise Exception("A model or ensemble id is needed to create a"
                            " prediction. %s found." % resource_type)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({"input_data": input_data})
        if model_id is not None:
            create_args.update({"model": model_id})
        elif ensemble_id is not None:
            create_args.update({"ensemble": ensemble_id})
        elif logistic_regression_id is not None:
            create_args.update({"logisticregression": logistic_regression_id})
        elif deepnet_id is not None:
            create_args.update({"deepnet": deepnet_id})

        body = json.dumps(create_args)
        return self._create(self.prediction_url,
                            body,
                            verify=self.verify_prediction)
Exemplo n.º 31
0
    def create_dataset(self,
                       origin_resource,
                       args=None,
                       wait_time=3,
                       retries=10):
        """Creates a remote dataset.

        Uses a remote resource to create a new dataset using the
        arguments in `args`.
        The allowed remote resources can be:
            - source
            - dataset
            - list of datasets
            - cluster
        In the case of using cluster id as origin_resources, a centroid must
        also be provided in the args argument. The first centroid is used
        otherwise.
        If `wait_time` is higher than 0 then the dataset creation
        request is not sent until the `source` has been created successfuly.

        """
        create_args = {}
        if args is not None:
            create_args.update(args)

        if isinstance(origin_resource, list):
            # mutidatasets
            create_args = self._set_create_from_datasets_args(
                origin_resource,
                args=create_args,
                wait_time=wait_time,
                retries=retries,
                key="origin_datasets")
        else:
            # dataset from source
            resource_type = get_resource_type(origin_resource)
            if resource_type == SOURCE_PATH:
                source_id = get_source_id(origin_resource)
                if source_id:
                    check_resource(source_id,
                                   query_string=TINY_RESOURCE,
                                   wait_time=wait_time,
                                   retries=retries,
                                   raise_on_error=True,
                                   api=self)
                    create_args.update({"source": source_id})
            # dataset from dataset
            elif resource_type == DATASET_PATH:
                create_args = self._set_create_from_datasets_args(
                    origin_resource,
                    args=create_args,
                    wait_time=wait_time,
                    retries=retries,
                    key="origin_dataset")
            # dataset from cluster and centroid
            elif resource_type == CLUSTER_PATH:
                cluster_id = get_cluster_id(origin_resource)
                cluster = check_resource(cluster_id,
                                         query_string=TINY_RESOURCE,
                                         wait_time=wait_time,
                                         retries=retries,
                                         raise_on_error=True,
                                         api=self)
                if not 'centroid' in create_args:
                    try:
                        centroid = cluster['object'][
                            'cluster_datasets_ids'].keys()[0]
                        create_args.update({'centroid': centroid})
                    except KeyError:
                        raise KeyError("Failed to generate the dataset. A "
                                       "centroid id is needed in the args "
                                       "argument to generate a dataset from "
                                       "a cluster.")
                create_args.update({'cluster': cluster_id})
            else:
                raise Exception("A source, dataset, list of dataset ids"
                                " or cluster id plus centroid id are needed"
                                " to create a"
                                " dataset. %s found." % resource_type)

        body = json.dumps(create_args)
        return self._create(self.dataset_url, body)