from bindsnet.encoding import poisson
from bindsnet.pipeline import Pipeline
from bindsnet.models import DiehlAndCook2015
from bindsnet.environment import DatasetEnvironment

# Build network.
network = DiehlAndCook2015(n_input=32 * 32 * 3,
                           n_neurons=100,
                           dt=1.0,
                           exc=22.5,
                           inh=17.5,
                           nu=[0, 1e-2],
                           norm=78.4)

# Specify dataset wrapper environment.
environment = DatasetEnvironment(dataset=CIFAR10(path='../../data/CIFAR10'),
                                 train=True)

# Build pipeline from components.
pipeline = Pipeline(network=network,
                    environment=environment,
                    encoding=poisson,
                    time=50,
                    plot_interval=1)

# Train the network.
labels = environment.labels
for i in range(60000):
    # Choose an output neuron to clamp to spiking behavior.
    c = choice(10, size=1, replace=False)
    c = 10 * labels[i].long() + Tensor(c).long()
Exemplo n.º 2
0
n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
path = os.path.join('..', '..', 'data', 'CIFAR10')

# Build network.
network = DiehlAndCook2015(n_inpt=32 * 32 * 3,
                           n_neurons=n_neurons,
                           exc=exc,
                           inh=inh,
                           dt=dt,
                           nu_pre=2e-5,
                           nu_post=2e-3,
                           norm=10.0)

# Initialize data "environment".
environment = DatasetEnvironment(dataset=CIFAR10(path=path, download=True),
                                 train=train,
                                 time=time,
                                 intensity=intensity)

# Specify data encoding.
encoding = poisson

spikes = {}
for layer in set(network.layers):
    spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time)
    network.add_monitor(spikes[layer], name='%s_spikes' % layer)

voltages = {}
for layer in set(network.layers) - {'X'}:
    voltages[layer] = Monitor(network.layers[layer],
from bindsnet.models import DiehlAndCook2015
from bindsnet.environment import DatasetEnvironment

# Build network.
network = DiehlAndCook2015(
    n_inpt=32 * 32 * 3,
    n_neurons=100,
    dt=1.0,
    exc=22.5,
    inh=17.5,
    nu=[0, 1e-2],
    norm=78.4,
)

# Specify dataset wrapper environment.
environment = DatasetEnvironment(dataset=CIFAR10(path="../../data/CIFAR10"),
                                 train=True)

# Build pipeline from components.
pipeline = Pipeline(network=network,
                    environment=environment,
                    encoding=poisson,
                    time=50,
                    plot_interval=1)

# Train the network.
labels = environment.labels
for i in range(60000):
    # Choose an output neuron to clamp to spiking behavior.
    c = choice(10, size=1, replace=False)
    c = 10 * labels[i].long() + Tensor(c).long()
Exemplo n.º 4
0
# Voltage recording for excitatory and inhibitory layers.
print(network.layers)
print('hello')
exc_voltage_monitor = Monitor(network.layers["Ae"], ["v"], time=time)
inh_voltage_monitor = Monitor(network.layers["Ai"], ["v"], time=time)
network.add_monitor(exc_voltage_monitor, name="exc_voltage")
network.add_monitor(inh_voltage_monitor, name="inh_voltage")

# Load CIFAR10 data.
train_dataset = CIFAR10(
    PoissonEncoder(time=time, dt=dt),
    None,
    root=os.path.join("..", "..", "data", "CIFAR10"),
    train=True,
    download=True,
    transform=transforms.Compose([
        transforms.ToTensor(),
        #transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        transforms.Lambda(lambda x: x * intensity)
    ]),
)

test_dataset = CIFAR10(
    PoissonEncoder(time=time, dt=dt),
    None,
    root=os.path.join("..", "..", "data", "CIFAR10"),
    train=False,
    download=True,
    transform=transforms.Compose([
        transforms.ToTensor(),
        #transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
Exemplo n.º 5
0
path = os.path.join("..", "..", "data", "CIFAR10")

# Build network.
network = DiehlAndCook2015(
    n_inpt=32 * 32 * 3,
    n_neurons=n_neurons,
    exc=exc,
    inh=inh,
    dt=dt,
    nu=[2e-5, 2e-3],
    norm=10.0,
)

# Initialize data "environment".
environment = DatasetEnvironment(
    dataset=CIFAR10(path=path, download=True),
    train=train,
    time=time,
    intensity=intensity,
)

# Specify data encoding.
encoding = poisson

spikes = {}
for layer in set(network.layers):
    spikes[layer] = Monitor(network.layers[layer], state_vars=["s"], time=time)
    network.add_monitor(spikes[layer], name="%s_spikes" % layer)

voltages = {}
for layer in set(network.layers) - {"X"}:
Exemplo n.º 6
0
from bindsnet.datasets import CIFAR10
from bindsnet.encoding import poisson
from bindsnet.pipeline import Pipeline
from bindsnet.models import DiehlAndCook2015
from bindsnet.environment import DatasetEnvironment

# Build Diehl & Cook 2015 network.
network = DiehlAndCook2015(n_inpt=32 * 32 * 3,
                           n_neurons=400,
                           exc=22.5,
                           inh=17.5,
                           dt=1.0,
                           norm=78.4)

# Specify dataset wrapper environment.
environment = DatasetEnvironment(dataset=CIFAR10(path='../../data/CIFAR10',
                                                 download=True),
                                 train=True,
                                 intensity=0.25)

# Build pipeline from components.
pipeline = Pipeline(network=network,
                    environment=environment,
                    encoding=poisson,
                    time=350,
                    plot_interval=1)

# Train the network.
for i in range(60000):
    pipeline.step()
    network._reset()
def main(n_epochs=1, batch_size=100, time=50, update_interval=50, n_examples=1000, plot=False, save=True):
    print()
    print('Loading CIFAR-10 data...')

    # Get the CIFAR-10 data.
    dataset = CIFAR10('../../data/CIFAR10', download=True)

    images, labels = dataset.get_train()
    images /= images.max()  # Standardizing to [0, 1].
    images = images.permute(0, 3, 1, 2)
    labels = labels.long()

    test_images, test_labels = dataset.get_test()
    test_images /= test_images.max()  # Standardizing to [0, 1].
    test_images = test_images.permute(0, 3, 1, 2)
    test_labels = test_labels.long()

    if torch.cuda.is_available():
        images = images.cuda()
        labels = labels.cuda()
        test_images = test_images.cuda()
        test_labels = test_labels.cuda()

    model_name = '_'.join([
        str(x) for x in [n_epochs, batch_size, time, update_interval, n_examples]
    ])

    ANN = LeNet()

    criterion = nn.CrossEntropyLoss()
    if save and os.path.isfile(os.path.join(params_path, model_name + '.pt')):
        print()
        print('Loading trained ANN from disk...')
        ANN.load_state_dict(torch.load(os.path.join(params_path, model_name + '.pt')))

        if torch.cuda.is_available():
            ANN = ANN.cuda()
    else:
        print()
        print('Creating and training the ANN...')
        print()

        # Specify optimizer and loss function.
        optimizer = optim.Adam(params=ANN.parameters(), lr=1e-3)

        batches_per_epoch = int(images.size(0) / batch_size)

        # Train the ANN.
        for i in range(n_epochs):
            losses = []
            accuracies = []
            for j in range(batches_per_epoch):
                batch_idxs = torch.from_numpy(
                    np.random.choice(np.arange(images.size(0)), size=batch_size, replace=False)
                )
                im_batch = images[batch_idxs]
                label_batch = labels[batch_idxs]

                outputs = ANN.forward(im_batch)
                loss = criterion(outputs, label_batch)
                predictions = torch.max(outputs, 1)[1]
                correct = (label_batch == predictions).sum().float() / batch_size

                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                losses.append(loss.item())
                accuracies.append(correct.item() * 100)

            mean_loss = np.mean(losses)
            mean_accuracy = np.mean(accuracies)

            outputs = ANN.forward(test_images)
            loss = criterion(outputs, test_labels).item()
            predictions = torch.max(outputs, 1)[1]
            test_accuracy = ((test_labels == predictions).sum().float() / test_labels.numel()).item() * 100

            print(
                f'Epoch: {i+1} / {n_epochs}; Train Loss: {mean_loss:.4f}; Train Accuracy: {mean_accuracy:.4f}'
            )
            print(f'\tTest Loss: {loss:.4f}; Test Accuracy: {test_accuracy:.4f}')

        if save:
            torch.save(ANN.state_dict(), os.path.join(params_path, model_name + '.pt'))

    print()
    print('Converting ANN to SNN...')

    # Do ANN to SNN conversion.
    SNN = ann_to_snn(ANN, input_shape=(1, 3, 32, 32), data=images[:n_examples])

    for l in SNN.layers:
        if l != 'Input':
            SNN.add_monitor(
                Monitor(SNN.layers[l], state_vars=['s', 'v'], time=time), name=l
            )
    for c in SNN.connections:
        if isinstance(SNN.connections[c], MaxPool2dConnection):
            SNN.add_monitor(
                Monitor(SNN.connections[c], state_vars=['firing_rates'], time=time), name=f'{c[0]}_{c[1]}_rates'
            )

    outputs = ANN.forward(images)
    loss = criterion(outputs, labels)
    predictions = torch.max(outputs, 1)[1]
    accuracy = ((labels == predictions).sum().float() / labels.numel()).item() * 100

    print()
    print(f'(Post training) Training Loss: {loss:.4f}; Training Accuracy: {accuracy:.4f}')

    spike_ims = None
    spike_axes = None
    frs_ims = None
    frs_axes = None

    correct = []

    print()
    print('Testing SNN on MNIST data...')
    print()

    # Test SNN on MNIST data.
    start = t()
    for i in range(images.size(0)):
        if i > 0 and i % update_interval == 0:
            print(
                f'Progress: {i} / {images.size(0)}; Elapsed: {t() - start:.4f}; Accuracy: {np.mean(correct) * 100:.4f}'
            )
            start = t()

        inpts = {'Input': images[i].repeat(time, 1, 1, 1, 1)}

        SNN.run(inpts=inpts, time=time)

        spikes = {
            l: SNN.monitors[l].get('s') for l in SNN.monitors if 's' in SNN.monitors[l].state_vars
        }
        voltages = {
            l: SNN.monitors[l].get('v') for l in SNN.monitors if 'v' in SNN.monitors[l].state_vars
        }
        firing_rates = {
            l: SNN.monitors[l].get('firing_rates').view(-1, time) for l in SNN.monitors if 'firing_rates' in SNN.monitors[l].state_vars
        }

        prediction = torch.softmax(voltages['12'].sum(1), 0).argmax()
        correct.append((prediction == labels[i]).item())

        SNN.reset_()

        if plot:
            inpts = {'Input': inpts['Input'].view(time, -1).t()}
            spikes = {**inpts, **spikes}
            spike_ims, spike_axes = plot_spikes(
                {k: spikes[k].cpu() for k in spikes}, ims=spike_ims, axes=spike_axes
            )
            frs_ims, frs_axes = plot_voltages(
                firing_rates, ims=frs_ims, axes=frs_axes
            )

            plt.pause(1e-3)
Exemplo n.º 8
0
voltages = {}
for layer in set(network.layers) - {"X"}:
    voltages[layer] = Monitor(network.layers[layer],
                              state_vars=["v"],
                              time=int(time / dt),
                              device=device)
    network.add_monitor(voltages[layer], name="%s_voltages" % layer)

# Load MNIST data.
test_dataset = CIFAR10(
    PoissonEncoder(time=time, dt=dt),
    None,
    root=os.path.join("data", "CIFAR10"),
    download=True,
    train=False,
    transform=transforms.Compose([
        transforms.Grayscale(),
        transforms.ToTensor(),
        transforms.Lambda(lambda x: x * intensity)
    ]),
)

# Sequence of accuracy estimates.
accuracy = {"all": 0, "proportion": 0}

# Record spikes during the simulation.
spike_record = torch.zeros((1, int(time / dt), n_neurons), device=device)

# Train the network.
print("\nBegin testing\n")
network.train(mode=False)
Exemplo n.º 9
0
                           exc=exc,
                           inh=inh,
                           dt=dt,
                           nu=[0, 0.25],
                           wmin=0,
                           wmax=10,
                           norm=3500)

# Voltage recording for excitatory and inhibitory layers.
exc_voltage_monitor = Monitor(network.layers['Ae'], ['v'], time=time)
inh_voltage_monitor = Monitor(network.layers['Ai'], ['v'], time=time)
network.add_monitor(exc_voltage_monitor, name='exc_voltage')
network.add_monitor(inh_voltage_monitor, name='inh_voltage')

# Load MNIST data.
images, labels = CIFAR10(path=os.path.join('..', '..', 'data', 'CIFAR10'),
                         download=True).get_train()
images = images.view(-1, 32 * 32 * 3)
images *= intensity
if gpu:
    images = images.to('cuda')
    labels = labels.to('cuda')

# Lazily encode data as Poisson spike trains.
data_loader = poisson_loader(data=images, time=time, dt=dt)

# Record spikes during the simulation.
spike_record = torch.zeros(update_interval, time, n_neurons)

# Neuron assignments and spike proportions.
assignments = -torch.ones_like(torch.Tensor(n_neurons))
proportions = torch.zeros_like(torch.Tensor(n_neurons, 10))
    output_bias_connection = Connection(source=output_bias,
                                        target=output_layer)
    network.add_connection(input_connection, source='X', target='Y')
    network.add_connection(hidden_bias_connection, source='Y_b', target='Y')
    network.add_connection(hidden_connection, source='Y', target='Z')
    network.add_connection(output_bias_connection, source='Z_b', target='Z')

    # State variable monitoring.
    for l in network.layers:
        m = Monitor(network.layers[l], state_vars=['s'], time=time)
        network.add_monitor(m, name=l)
else:
    network = load_network(os.path.join(params_path, model_name + '.pt'))

# Load CIFAR-10 data.
dataset = CIFAR10(path=data_path, download=True, shuffle=True)

if train:
    images, labels = dataset.get_train()
else:
    images, labels = dataset.get_test()

images, labels = images[:n_examples], labels[:n_examples]
images, labels = iter(images.view(-1, 32 * 32 * 3) / 255000), iter(labels)

grads = {}
accuracies = []
predictions = []
ground_truth = []
best = -np.inf
spike_ims, spike_axes, weights1_im, weights2_im = None, None, None, None
Exemplo n.º 11
0
    inh=inh,
    dt=dt,
    nu=[0, 0.25],
    wmin=0,
    wmax=10,
    norm=3500,
)

# Voltage recording for excitatory and inhibitory layers.
exc_voltage_monitor = Monitor(network.layers["Ae"], ["v"], time=time)
inh_voltage_monitor = Monitor(network.layers["Ai"], ["v"], time=time)
network.add_monitor(exc_voltage_monitor, name="exc_voltage")
network.add_monitor(inh_voltage_monitor, name="inh_voltage")

# Load MNIST data.
images, labels = CIFAR10(path=os.path.join("..", "..", "data", "CIFAR10"),
                         download=True).get_train()
images = images.view(-1, 32 * 32 * 3)
images *= intensity
if gpu:
    images = images.to("cuda")
    labels = labels.to("cuda")

# Lazily encode data as Poisson spike trains.
data_loader = poisson_loader(data=images, time=time, dt=dt)

# Record spikes during the simulation.
spike_record = torch.zeros(update_interval, time, n_neurons)

# Neuron assignments and spike proportions.
assignments = -torch.ones_like(torch.Tensor(n_neurons))
proportions = torch.zeros_like(torch.Tensor(n_neurons, 10))
Exemplo n.º 12
0
C1 = Connection(source=inpt, target=output, w=torch.randn(inpt.n, output.n))
C2 = Connection(source=output, target=output, w=0.5 * torch.randn(output.n, output.n))

network.add_connection(C1, source="I", target="O")
network.add_connection(C2, source="O", target="O")

spikes = {}
for l in network.layers:
    spikes[l] = Monitor(network.layers[l], ["s"], time=250)
    network.add_monitor(spikes[l], name="%s_spikes" % l)

voltages = {"O": Monitor(network.layers["O"], ["v"], time=250)}
network.add_monitor(voltages["O"], name="O_voltages")

# Get MNIST training images and labels.
images, labels = CIFAR10(path="../../data/CIFAR10", download=True).get_train()
images *= 0.25

# Create lazily iterating Poisson-distributed data loader.
loader = zip(poisson_loader(images, time=250), iter(labels))

inpt_axes = None
inpt_ims = None
spike_axes = None
spike_ims = None
weights_im = None
weights_im2 = None
voltage_ims = None
voltage_axes = None

# Run training data on reservoir computer and store (spikes per neuron, label) per example.
Exemplo n.º 13
0
recurrent_conn = SparseConnection(conv_layer, conv_layer, w=w)

network.add_layer(input_layer, name='X')
network.add_layer(conv_layer, name='Y')
network.add_layer(conv_layer2, name='Y_')
network.add_connection(conv_conn, source='X', target='Y')
network.add_connection(conv_conn2, source='X', target='Y_')
network.add_connection(recurrent_conn, source='Y', target='Y')

# Voltage recording for excitatory and inhibitory layers.
voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
network.add_monitor(voltage_monitor, name='output_voltage')

# Load CIFAR-10 data.
dataset = CIFAR10(path=os.path.join('..', '..', 'data', 'CIFAR10'),
                  download=True)

if train:
    images, labels = dataset.get_train()
else:
    images, labels = dataset.get_test()

images *= intensity

# Record spikes during the simulation.
spike_record = torch.zeros(update_interval, time, n_neurons)

# Neuron assignments and spike proportions.
if train:
    assignments = -torch.ones_like(torch.Tensor(n_neurons))
    proportions = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
Exemplo n.º 14
0
def main(seed=0,
         n_train=60000,
         n_test=10000,
         kernel_size=16,
         stride=4,
         n_filters=25,
         padding=0,
         inhib=500,
         lr=0.01,
         lr_decay=0.99,
         time=50,
         dt=1,
         intensity=1,
         progress_interval=10,
         update_interval=250,
         train=True,
         plot=False,
         gpu=False):

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    if not train:
        update_interval = n_test

    if kernel_size == 32:
        conv_size = 1
    else:
        conv_size = int((32 - kernel_size + 2 * padding) / stride) + 1

    per_class = int((n_filters * conv_size * conv_size) / 10)

    # Build network.
    network = Network()
    input_layer = Input(n=1024, shape=(1, 1, 32, 32), traces=True)

    conv_layer = DiehlAndCookNodes(n=n_filters * conv_size * conv_size,
                                   shape=(1, n_filters, conv_size, conv_size),
                                   traces=True)

    conv_conn = Conv2dConnection(input_layer,
                                 conv_layer,
                                 kernel_size=kernel_size,
                                 stride=stride,
                                 update_rule=PostPre,
                                 norm=0.4 * kernel_size**2,
                                 nu=[0, lr],
                                 wmin=0,
                                 wmax=1)

    w = -inhib * torch.ones(n_filters, conv_size, conv_size, n_filters,
                            conv_size, conv_size)
    for f in range(n_filters):
        for i in range(conv_size):
            for j in range(conv_size):
                w[f, i, j, f, i, j] = 0

    w = w.view(n_filters * conv_size**2, n_filters * conv_size**2)
    recurrent_conn = Connection(conv_layer, conv_layer, w=w)

    network.add_layer(input_layer, name='X')
    network.add_layer(conv_layer, name='Y')
    network.add_connection(conv_conn, source='X', target='Y')
    network.add_connection(recurrent_conn, source='Y', target='Y')

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load CIFAR-10 data.
    dataset = CIFAR10(path=os.path.join('..', '..', 'data', 'CIFAR10'),
                      download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images *= intensity
    images = images.mean(-1)

    # Lazily encode data as Poisson spike trains.
    data_loader = poisson_loader(data=images, time=time, dt=dt)

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    voltages = {}
    for layer in set(network.layers) - {'X'}:
        voltages[layer] = Monitor(network.layers[layer],
                                  state_vars=['v'],
                                  time=time)
        network.add_monitor(voltages[layer], name='%s_voltages' % layer)

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    voltage_ims = None
    voltage_axes = None

    # Train the network.
    print('Begin training.\n')
    start = t()

    for i in range(n_train):
        if i % progress_interval == 0:
            print('Progress: %d / %d (%.4f seconds)' %
                  (i, n_train, t() - start))
            start = t()

            if train and i > 0:
                network.connections['X', 'Y'].nu[1] *= lr_decay

        # Get next input sample.
        sample = next(data_loader).unsqueeze(1).unsqueeze(1)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        # Optionally plot various simulation information.
        if plot:
            # inpt = inpts['X'].view(time, 1024).sum(0).view(32, 32)

            weights1 = conv_conn.w
            _spikes = {
                'X': spikes['X'].get('s').view(32**2, time),
                'Y': spikes['Y'].get('s').view(n_filters * conv_size**2, time)
            }
            _voltages = {
                'Y': voltages['Y'].get('v').view(n_filters * conv_size**2,
                                                 time)
            }

            # inpt_axes, inpt_ims = plot_input(
            #     images[i].view(32, 32), inpt, label=labels[i], axes=inpt_axes, ims=inpt_ims
            # )
            # voltage_ims, voltage_axes = plot_voltages(_voltages, ims=voltage_ims, axes=voltage_axes)

            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_conv2d_weights(weights1, im=weights_im)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print('Progress: %d / %d (%.4f seconds)\n' %
          (n_train, n_train, t() - start))
    print('Training complete.\n')