Exemplo n.º 1
0
def load_data(data_folder):
    input_fn = os.path.join(data_folder,"biomuta-master.csv")
    open_file = open(input_fn)
    db_biomuta = csv.reader(open_file)
    index = next(db_biomuta)
    assert len(index) == VALID_COLUMN_NO, "Expecting %s columns, but got %s" % (VALID_COLUMN_NO, len(index))
    index = [clean_index(s) for s in index]
    biomuta = (dict(zip(index, row)) for row in db_biomuta)
    json_rows = map(_map_line_to_json, biomuta)

    fd_tmp, tmp_path = mkstemp(dir=data_folder)
    
    try:
        with open(tmp_path, "w") as f:
            dbwriter = csv.writer(f)
            for i, doc in enumerate(json_rows):
                if doc:
                    dbwriter.writerow([doc['_id'], json.dumps(doc)])  

        csvsort(tmp_path, [0,], has_header=False)
        
        with open(tmp_path) as csvfile:
            json_rows = csv.reader(csvfile)
            json_rows = (json.loads(row[1]) for row in json_rows)
            row_groups = (it for (key, it) in groupby(json_rows, lambda row: row["_id"]))
            json_rows = (merge_duplicate_rows(rg, "biomuta") for rg in row_groups)
            json_rows = (unlist(dict_sweep(row, vals=[None, ])) for row in json_rows)
            for res in json_rows:
                yield res

    finally:
        os.remove(tmp_path)
Exemplo n.º 2
0
def data_generator(input_file, version):
    open_file = open(input_file)
    evs = csv.reader(open_file, delimiter=" ")
    # Skip first 8 meta lines
    evs = islice(evs, 8, None)
    evs = (row for row in evs if ":" in row[30] and
           len(row) == VALID_COLUMN_NO)
    # skip rows with multiple mutations
    evs = (row for row in evs if len(row[3].split(";")) == 1)
    json_rows = map(partial(_map_line_to_json, version=version), evs)
    row_groups = (it for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    return (merge_duplicate_rows(rg, "evs") for rg in row_groups)
Exemplo n.º 3
0
def data_generator(input_file):
    # sort by the first column (hgvs id returned from Mutalyzer)
    # TODO: use some python there...
    os.system("sort -k1 -n %s > %s.sorted" % (input_file, input_file))
    open_file = open("%s.sorted" % (input_file))
    emv = csv.reader(open_file, delimiter=",")
    # Skip header
    next(emv)
    emv = filter(lambda x: x[0], emv)
    json_rows = map(_map_line_to_json, emv)
    row_groups = (it for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    return (merge_duplicate_rows(rg, "emv") for rg in row_groups)
Exemplo n.º 4
0
def data_generator(input_file):
    # sort by the first column (hgvs id returned from Mutalyzer)
    # TODO: use some python there...
    os.system("sort -k1 -n %s > %s.sorted" % (input_file, input_file))
    open_file = open("%s.sorted" % (input_file))
    emv = csv.reader(open_file, delimiter=",")
    # Skip header
    next(emv)
    emv = filter(lambda x: x[0], emv)
    json_rows = map(_map_line_to_json, emv)
    row_groups = (it
                  for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    return (merge_duplicate_rows(rg, "emv") for rg in row_groups)
def load_data(input_file):
    os.system("sort -t$'\t' -k14 -k15 -k20 -n %s > %s_sorted.tsv" \
              % (input_file, input_file))
    open_file = open("%s_sorted.tsv" % (input_file))
    print input_file
    clinvar = csv.reader(open_file, delimiter="\t")
    clinvar = (row for row in clinvar
               if row[18] != '-' and row[18].find('?') == -1 and row[13] != ""
               and row[12] == "GRCh37" and not re.search(r'p.', row[18]))
    json_rows = (row for row in imap(_map_line_to_json, clinvar) if row)
    row_groups = (it
                  for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    return (merge_duplicate_rows(rg, "clinvar") for rg in row_groups)
Exemplo n.º 6
0
def data_generator(input_file, version):
    open_file = open(input_file)
    evs = csv.reader(open_file, delimiter=" ")
    # Skip first 8 meta lines
    evs = islice(evs, 8, None)
    evs = (row for row in evs
           if ":" in row[30] and len(row) == VALID_COLUMN_NO)
    # skip rows with multiple mutations
    evs = (row for row in evs if len(row[3].split(";")) == 1)
    json_rows = map(partial(_map_line_to_json, version=version), evs)
    row_groups = (it
                  for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    return (merge_duplicate_rows(rg, "evs") for rg in row_groups)
Exemplo n.º 7
0
def load_data(data_folder):
    tar = tarfile.open(
        os.path.join(data_folder, "Kaviar-160204-Public-hg19.vcf.tar"))
    member = tar.getmember(
        "Kaviar-160204-Public/vcfs/Kaviar-160204-Public-hg19.vcf.gz")
    member.name = os.path.basename(member.name)
    tar.extract(member, path=data_folder)
    tar.close()

    input_fn = os.path.join(data_folder, "Kaviar-160204-Public-hg19.vcf.gz")
    vcf_reader = vcf.Reader(filename=input_fn,
                            compressed=True,
                            strict_whitespace=True)

    json_rows = map(_map_line_to_json, vcf_reader)
    json_rows = chain.from_iterable(json_rows)

    fd_tmp, tmp_path = mkstemp(dir=data_folder)

    try:
        with open(tmp_path, "w") as f:
            dbwriter = csv.writer(f)
            for doc in json_rows:
                if doc:
                    dbwriter.writerow([doc['_id'], json.dumps(doc)])

        csvsort(tmp_path, [
            0,
        ])

        with open(tmp_path) as csvfile:
            json_rows = csv.reader(csvfile)
            json_rows = (json.loads(row[1]) for row in json_rows)
            row_groups = (
                it for (key, it) in groupby(json_rows, lambda row: row["_id"]))
            json_rows = (merge_duplicate_rows(rg, "kaviar")
                         for rg in row_groups)

            import logging
            for row in json_rows:
                logging.debug(row)
                res = unlist(dict_sweep(row, vals=[
                    None,
                ]))
                yield res

    finally:
        os.remove(tmp_path)
        os.remove(input_fn)
Exemplo n.º 8
0
def fetch_generator(tabix, contig):
    dbfile_path = 'home/kevinxin/cadd/' + 'cadd_id' + contig
    db = dbm.open(dbfile_path)
    ids = db.keys()
    set_ids = set(ids)
    print(len(ids))
    fetch = tabix.fetch(contig)
    rows = map(lambda x: x.split('\t'), fetch)
#   looking for annotype as 'codingtranscript', 'noncodingtranscript'
    annos = (row for row in rows if "CodingTranscript" in row[9] or
             get_hgvs_from_vcf(row[0], row[1], row[2], row[4]) in set_ids)
    json_rows = map(_map_line_to_json, annos)
    json_rows = (row for row in json_rows if row)
    row_groups = (it for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    return (merge_duplicate_rows(rg, "cadd") for rg in row_groups)
Exemplo n.º 9
0
def load_data(input_file):
    src_db = mongo.get_src_db()
    if not "dbsnp_hg19" in src_db.collection_names():
        raise ValueError("'dbsnp_hg19' collection is missing, run dbsnp uploader first")
    dbsnp_col = src_db["dbsnp_hg19"]
    open_file = open(input_file,encoding="cp1252")
    open_file = csv.reader(open_file, delimiter="\t")
    next(open_file)
    grasp = map(row_generator, open_file)
    grasp = filter(lambda row: row[58] != "", grasp)
    json_rows = map(partial(_map_line_to_json,dbsnp_col=dbsnp_col), grasp)
    json_rows = (row for row in json_rows if row)
    row_groups = (it for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    for row in (merge_duplicate_rows(rg, "grasp") for rg in row_groups):
        yield row
Exemplo n.º 10
0
def fetch_generator(tabix, contig):
    dbfile_path = 'home/kevinxin/cadd/' + 'cadd_id' + contig
    db = dbm.open(dbfile_path)
    ids = db.keys()
    set_ids = set(ids)
    print(len(ids))
    fetch = tabix.fetch(contig)
    rows = map(lambda x: x.split('\t'), fetch)
    #   looking for annotype as 'codingtranscript', 'noncodingtranscript'
    annos = (row for row in rows if "CodingTranscript" in row[9]
             or get_hgvs_from_vcf(row[0], row[1], row[2], row[4]) in set_ids)
    json_rows = map(_map_line_to_json, annos)
    json_rows = (row for row in json_rows if row)
    row_groups = (it
                  for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    return (merge_duplicate_rows(rg, "cadd") for rg in row_groups)
Exemplo n.º 11
0
def load_data(input_file):
    os.system("sort -t$'\t' -k14 -k15 -k20 -n %s > %s_sorted.tsv" \
              % (input_file, input_file))
    open_file = open("%s_sorted.tsv" % (input_file))
    print input_file
    clinvar = csv.reader(open_file, delimiter="\t")
    clinvar = (row for row in clinvar
               if row[18] != '-' and
               row[18].find('?') == -1 and
               row[13] != "" and
               row[12] == "GRCh37" and
               not re.search(r'p.', row[18]))
    json_rows = (row for row in imap(_map_line_to_json, clinvar) if row)
    row_groups = (it for (key, it) in groupby(json_rows, lambda row:
                  row["_id"]))
    return (merge_duplicate_rows(rg, "clinvar") for rg in row_groups)
Exemplo n.º 12
0
def load_data(input_file):
    src_db = mongo.get_src_db()
    if not "dbsnp_hg19" in src_db.collection_names():
        raise ValueError(
            "'dbsnp_hg19' collection is missing, run dbsnp uploader first")
    dbsnp_col = src_db["dbsnp_hg19"]
    open_file = open(input_file, encoding="cp1252")
    open_file = csv.reader(open_file, delimiter="\t")
    next(open_file)
    grasp = map(row_generator, open_file)
    grasp = filter(lambda row: row[58] != "", grasp)
    json_rows = map(partial(_map_line_to_json, dbsnp_col=dbsnp_col), grasp)
    json_rows = (row for row in json_rows if row)
    row_groups = (it
                  for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    for row in (merge_duplicate_rows(rg, "grasp") for rg in row_groups):
        yield row
Exemplo n.º 13
0
def load_data(data_folder):
    input_fn = os.path.join(data_folder, "CCLE_DepMap_18q3_maf_20180718.txt")
    db_ccle = csv.reader(open(input_fn), delimiter='\t')
    index = next(db_ccle)
    assert len(index) == VALID_COLUMN_NO, \
        "Expecting %s columns, but got %s" % (VALID_COLUMN_NO, len(index))
    index = [clean_index(s) for s in index]
    ccle = (dict(zip(index, row)) for row in db_ccle)
    ccle = filter(lambda row: row["chromosome"] != "", ccle)
    json_rows = map(_map_line_to_json, ccle)
    json_rows = (row for row in json_rows if row)
    json_rows = sorted(json_rows, key=lambda k: k['_id'])
    row_groups = (it
                  for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    json_rows = (merge_duplicate_rows(rg, "ccle") for rg in row_groups)
    return (unlist(dict_sweep(row, vals=[
        None,
    ])) for row in json_rows)
Exemplo n.º 14
0
def load_data(input_file):
    # os.system("sort -t$'\t' -k18 -k14 %s > %s_sorted.tsv" % (input_file, input_file))
    # open_file = open("%s_sorted.tsv" % (input_file))
    open_file = open(input_file)
    open_file = csv.reader(open_file, delimiter="\t")
    cosmic = []
    for row in open_file:
        try:
            c = row[13].split(".")[1]
        except:
            c = ""
        row.append(row[17].split("-")[0] + "." + c)
        cosmic.append(row)
        if row[-1] != "":
            print(row[-1])
    cosmic = sorted(cosmic, key=operator.itemgetter(17), reverse=True)
    cosmic = filter(lambda row: row[17] != "" and row[13] != "", cosmic)
    json_rows = map(_map_line_to_json, cosmic)
    json_rows = (row for row in json_rows if row)
    row_groups = (it
                  for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    return (merge_duplicate_rows(rg, "cosmic") for rg in row_groups)
Exemplo n.º 15
0
def load_data(input_file):
    # os.system("sort -t$'\t' -k18 -k14 %s > %s_sorted.tsv" % (input_file, input_file))
    # open_file = open("%s_sorted.tsv" % (input_file))
    open_file = open(input_file)
    open_file = csv.reader(open_file, delimiter="\t")
    cosmic = []
    for row in open_file:
        try:
            c = row[13].split(".")[1]
        except:
            c = ""
        row.append(row[17].split("-")[0] + "." + c)
        cosmic.append(row)
        if row[-1] != "":
            print(row[-1])
    cosmic = sorted(cosmic, key=operator.itemgetter(17), reverse=True)
    cosmic = filter(lambda row:
                     row[17] != "" and
                     row[13] != "", cosmic)
    json_rows = map(_map_line_to_json, cosmic)
    json_rows = (row for row in json_rows if row)
    row_groups = (it for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    return (merge_duplicate_rows(rg, "cosmic") for rg in row_groups)
Exemplo n.º 16
0
def load_data(data_folder):
    input_fn = os.path.join(data_folder,
                            "denovo-db.non-ssc-samples.variants.tsv")
    open_file = open(input_fn)
    db_denovodb = csv.reader(open_file, delimiter="\t")
    index = next(db_denovodb)
    while index[0].startswith("##"):
        index = next(db_denovodb)
    assert len(
        index) == VALID_COLUMN_NO, "Expecting %s columns, but got %s" % (
            VALID_COLUMN_NO, len(index))
    index = [clean_index(s) for s in index]
    denovodb = (dict(zip(index, row)) for row in db_denovodb)
    denovodb = filter(lambda row: row["Chr"] != "", denovodb)
    json_rows = map(_map_line_to_json, denovodb)
    json_rows = (row for row in json_rows if row)
    json_rows = sorted(json_rows, key=lambda row: row["_id"])
    row_groups = (it
                  for (key, it) in groupby(json_rows, lambda row: row["_id"]))
    json_rows = (merge_duplicate_rows(rg, "denovodb") for rg in row_groups)
    return (unlist(dict_sweep(row, vals=[
        None,
    ])) for row in json_rows)