Exemplo n.º 1
0
    def compute(self, *args):
        if self.images is not None and len(self.images) > 0:
            f = self.getFocalLength()
            if f <= 0:
                return
            k1 = self.getK1()
            k2 = self.getK2()

            processedImages = None

            if self.motionModelVar.get() == alignment.eTranslate:
                processedImages = [
                    warp.warpSpherical(i, f, k1, k2)
                    for i in self.images
                ]
            else:
                processedImages = self.images

            t = np.eye(3)
            ipv = []
            for i in range(0, len(processedImages) - 1):
                self.set_status(
                    'Computing mapping from {0} to {1}'.format(i, i+1)
                )
                ipv.append(
                    blend.ImageInfo('', processedImages[i], np.linalg.inv(t))
                )
                t = self.computeMapping(
                    processedImages[i], processedImages[i+1]
                ).dot(t)

            ipv.append(blend.ImageInfo(
                '', processedImages[len(processedImages)-1], np.linalg.inv(t))
            )

            t = self.computeMapping(
                processedImages[len(processedImages)-1],
                processedImages[0]
            ).dot(t)

            if self.is360Var.get():
                ipv.append(blend.ImageInfo(
                    '', processedImages[0], np.linalg.inv(t))
                )

            self.set_status('Blending Images')
            self.setImage(blend.blendImages(
                ipv, int(self.blendWidthSlider.get()),
                self.is360Var.get() == 1
            ))
            self.set_status('Panorama generated')
        else:
            uiutils.error(
                'Select a folder with images before creating the panorama!'
            )
Exemplo n.º 2
0
def pano(set_n, use_algorithm):
    name_of_set = "ep" + str(set_n)
    name_of_path0 = "data/" + name_of_set  #+ "SIFT" + "_set_Lunch/"

    if use_algorithm == "SIFT":
        scale_percent = 30
    elif use_algorithm == "SURF":
        scale_percent = 20
    elif use_algorithm == "ORB":
        scale_percent = 10

    scale_percent = 20
    w_p = 200
    name_of_final = use_algorithm + "_" + name_of_set

    focalLength = 2500
    k1 = -0.0484573
    k2 = 0.0100024
    f = focalLength

    start_time = timeit.default_timer()

    name_of_path = name_of_path0
    iter = 1

    processedImages = None

    point_time_1 = timeit.default_timer()

    files = os.listdir(name_of_path0)
    images = [cv2.imread(os.path.join(name_of_path0, i)) for i in files]

    images_crop = []

    for i in images:
        # calculate the 50 percent of original dimensions
        width = int(i.shape[1] * scale_percent / 100)
        height = int(i.shape[0] * scale_percent / 100)

        # dsize
        dsize = (width, height)

        # resize image
        images_crop.append(cv2.resize(i, dsize))
        #images_crop.append(i)

    point_time_2 = timeit.default_timer()

    processedImages = [warp.warpSpherical(i, f, k1, k2) for i in images_crop]
    #processedImages = images_crop

    t = np.eye(3)
    ipv = []
    for i in range(0, len(processedImages) - 1):
        ipv.append(blend.ImageInfo('', processedImages[i], np.linalg.inv(t)))
        t = computeMapping(processedImages[i], processedImages[i + 1]).dot(t)

    ipv.append(
        blend.ImageInfo('', processedImages[len(processedImages) - 1],
                        np.linalg.inv(t)))
    t = computeMapping(processedImages[len(processedImages) - 1],
                       processedImages[0]).dot(t)

    result = blend.blendImages(ipv, int(w_p), False)
    #cv2.imwrite("result_" + name_of_final + ".jpg", result)
    stop_time = timeit.default_timer()
    height = result.shape[0]
    width = result.shape[1]
    filtr_res = contraharmonic_mean(result, (height, width), 0.5)
    #cv2.imwrite("result_" + name_of_final + "_f.jpg", result)

    # Create our shapening kernel, it must equal to one eventually
    kernel_sharpening = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
    # applying the sharpening kernel to the input image & displaying it.
    sharpened = cv2.filter2D(result, -1, kernel_sharpening)
    #cv2.imwrite("result_" + name_of_final + "_s.jpg", sharpened)

    median = result  #cv2.medianBlur(result, 3)
    #median = cv2.medianBlur(median, 3)
    #cv2.imwrite("result_" + name_of_final + "_m.jpg", median)

    sharpenedmedian = cv2.filter2D(median, -1, kernel_sharpening)
    cv2.imwrite("result_" + name_of_final + "_SM.jpg", sharpenedmedian)

    #seam_carving.main_seam("result_" + name_of_final + "_SM.jpg", "result_" + name_of_final + "_SM_SEAM.jpg")

    resave = cv2.imread("result_" + name_of_final + "_SM.jpg")
    cv2.imwrite("it3/result_" + name_of_final + ".jpg", resave)

    print('Execution time ' + name_of_set + ' ' + use_algorithm + ': ',
          stop_time - start_time)
Exemplo n.º 3
0
    :return: warpped images list
    """
    return [warp_spherical(img, f, k1, k2) for img in images]


imgs = load_images('panorama')
warpped = warp_images(imgs)

t = np.eye(3)
info = []
T = []
for i in range(len(warpped) - 1):
    print('Computing mapping from {0} to {1}'.format(i, i + 1))
    info.append(ImageInfo('', warpped[i], np.linalg.inv(t)))
    tmp = get_mapping(warpped[i], warpped[i + 1])
    print(tmp)
    t = tmp.dot(t)
    T.append(tmp)

info.append(ImageInfo('', warpped[len(warpped) - 1], np.linalg.inv(t)))
print('Computing mapping from {0} to {1}'.format(len(warpped) - 1, 0))
tmp = get_mapping(warpped[len(warpped) - 1], warpped[0])
print(tmp)
t = tmp.dot(t)
info.append(ImageInfo('', warpped[0], np.linalg.inv(t)))

# json.dump(T, fp=open('transform_output.json','w'), indent=4)
print('Blending Images.')
panorama = blendImages(info, blendWidth=50, is360=True)
cv2.imwrite('Panorama.jpg', panorama)