Exemplo n.º 1
0
def test_projection():
    launch_args = dict(
        scene=BLENDDIR / 'cam.blend',
        script=BLENDDIR / 'cam.blend.py',
        num_instances=1,
        named_sockets=['DATA'],
        background=True,
    )

    ortho_xy_expected = np.array([[480., 80], [480., 80], [480., 400],
                                  [480., 400], [160., 80], [160., 80],
                                  [160., 400], [160., 400]])

    proj_xy_expected = np.array([
        [468.148, 91.851],
        [431.111, 128.888],
        [468.148, 388.148],
        [431.111, 351.111],
        [171.851, 91.851],
        [208.888, 128.888],
        [171.851, 388.148],
        [208.888, 351.111],
    ])

    z_expected = np.array([6., 8, 6, 8, 6, 8, 6, 8])

    with btt.BlenderLauncher(**launch_args) as bl:
        addr = bl.launch_info.addresses['DATA']
        ds = btt.RemoteIterableDataset(addr, max_items=2)
        item = next(iter(ds))
        assert_allclose(item['ortho_xy'], ortho_xy_expected, atol=1e-2)
        assert_allclose(item['ortho_z'], z_expected, atol=1e-2)
        assert_allclose(item['proj_xy'], proj_xy_expected, atol=1e-2)
        assert_allclose(item['proj_z'], z_expected, atol=1e-2)
Exemplo n.º 2
0
def test_dataset_robustness():
    launch_args = dict(
        scene='',
        script=BLENDDIR/'dataset_robust.blend.py', 
        num_instances=2,        
        named_sockets=['DATA'],
        background=True,
    )

    with btt.BlenderLauncher(**launch_args) as bl:
        addr = bl.launch_info.addresses['DATA']

        # Note, https://github.com/pytorch/pytorch/issues/44108
        ds = btt.RemoteIterableDataset(addr, max_items=128)
        dl = DataLoader(ds, batch_size=4, num_workers=0, drop_last=False, shuffle=False)
        

        count = 0
        ids = []
        for item in dl:
            assert item['img'].shape == (4,64,64)
            assert item['frameid'].shape == (4,)
            ids.append(item['btid'])
            count += 1
        assert count == 32
        ids = np.concatenate(ids)
        assert (ids==1).sum() == 1
        assert (ids==0).sum() == 127
        
Exemplo n.º 3
0
def main():
    # Define how we want to launch Blender
    launch_args = dict(
        scene=Path(__file__).parent / 'compositor_normals_depth.blend',
        script=Path(__file__).parent / 'compositor_normals_depth.blend.py',
        num_instances=1,
        named_sockets=['DATA'],
    )

    # Launch Blender
    with btt.BlenderLauncher(**launch_args) as bl:
        # Create remote dataset and limit max length to 16 elements.
        addr = bl.launch_info.addresses['DATA']
        ds = btt.RemoteIterableDataset(addr, max_items=4)
        dl = data.DataLoader(ds, batch_size=4, num_workers=0)

        for item in dl:
            normals = item['normals']
            # Note, normals are color-coded (0..1), to convert back to original
            # range (-1..1) use
            # true_normals = (normals - 0.5) * \
            #    torch.tensor([2., 2., -2.]).view(1, 1, 1, -1)
            depth = item['depth']
            print('Received', normals.shape, depth.shape, depth.dtype,
                  np.ptp(depth))

            fig, axs = plt.subplots(2, 2)
            axs = np.asarray(axs).reshape(-1)
            for i in range(4):
                axs[i].imshow(depth[i, :, :, 0], vmin=1, vmax=2.5)
            fig, axs = plt.subplots(2, 2)
            axs = np.asarray(axs).reshape(-1)
            for i in range(4):
                axs[i].imshow(normals[i, :, :])
            plt.show()
Exemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('scene',
                        help='Blender scene name to run',
                        default='cube')
    args = parser.parse_args()

    launch_args = dict(scene=EXAMPLES_DIR / f'{args.scene}.blend',
                       script=EXAMPLES_DIR / f'{args.scene}.blend.py',
                       num_instances=INSTANCES,
                       named_sockets=['DATA'])

    with btt.BlenderLauncher(**launch_args) as bl:
        ds = btt.RemoteIterableDataset(bl.launch_info.addresses['DATA'])
        ds.stream_length(NUM_ITEMS)
        dl = data.DataLoader(ds,
                             batch_size=BATCH,
                             num_workers=WORKER_INSTANCES,
                             shuffle=False)

        # Wait to avoid timing startup times of Blender
        time.sleep(5)

        t0 = None
        tlast = None
        imgshape = None

        elapsed = []
        n = 0
        for item in dl:
            n += len(item['image'])
            if t0 is None:  # 1st is warmup
                t0 = time.time()
                tlast = t0
                imgshape = item['image'].shape
            elif n % (50 * BATCH) == 0:
                t = time.time()
                elapsed.append(t - tlast)
                tlast = t
                print('.', end='')
        assert n == NUM_ITEMS

        t1 = time.time()
        N = NUM_ITEMS - BATCH
        B = NUM_ITEMS // BATCH - 1
        print(
            f'Time {(t1-t0)/N:.3f}sec/image, {(t1-t0)/B:.3f}sec/batch, shape {imgshape}'
        )

        fig, _ = plt.subplots()
        plt.plot(np.arange(len(elapsed)), elapsed)
        plt.title('Receive times between 50 consecutive batches')
        save_path = EXAMPLES_DIR / 'tmp' / 'batches_elapsed.png'
        fig.savefig(str(save_path))
        plt.close(fig)
        print(f'Figure saved to {save_path}')
Exemplo n.º 5
0
def test_launcher_connected_remote(tmp_path):
    # Simulates BlenderLauncher called from a separate process and
    # shows how one can connect to already launched instances through
    # serialization of addresses.
    q = mp.Queue()
    p = mp.Process(target=_launch, args=(q, tmp_path))
    p.start()
    path = q.get()
    launch_info = btt.LaunchInfo.load_json(path)
    ds = btt.RemoteIterableDataset(launch_info.addresses['DATA'], max_items=2)
    items = [item for item in ds]
    _validate_result(items)
    p.join()
Exemplo n.º 6
0
def main():
    import logging
    logging.basicConfig(level=logging.INFO)

    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('scene', help='Blender scene name to run')
    parser.add_argument(
        '--replay',
        action='store_true',
        help='Replay from disc instead of launching from Blender')
    parser.add_argument('--record',
                        action='store_true',
                        help='Record raw blender data')
    args = parser.parse_args()

    with ExitStack() as es:
        if not args.replay:
            # Launch Blender instance. Upon exit of this script all Blender instances will be closed.
            bl = es.enter_context(
                btt.BlenderLauncher(
                    scene=Path(__file__).parent / f'{args.scene}.blend',
                    script=Path(__file__).parent / f'{args.scene}.blend.py',
                    num_instances=BLENDER_INSTANCES,
                    named_sockets=['DATA'],
                ))

            # Setup a streaming dataset
            ds = btt.RemoteIterableDataset(bl.launch_info.addresses['DATA'],
                                           item_transform=item_transform)
            # Iterable datasets do not support shuffle
            shuffle = False

            # Limit the total number of streamed elements
            ds.stream_length(64)

            # Setup raw recording if desired
            if args.record:
                ds.enable_recording(f'./tmp/record_{args.scene}')
        else:
            # Otherwise we replay from file.
            ds = btt.FileDataset(f'./tmp/record_{args.scene}',
                                 item_transform=item_transform)
            shuffle = True

        # Setup DataLoader and iterate
        dl = DataLoader(ds,
                        batch_size=BATCH,
                        num_workers=WORKER_INSTANCES,
                        shuffle=shuffle)
        iterate(dl)
Exemplo n.º 7
0
def test_launcher_app(tmp_path):

    p = mp.Process(target=_launch_app, args=(tmp_path, LAUNCH_ARGS))
    p.start()

    import time
    path = tmp_path/'launchinfo.json'
    while not Path.exists(path):
        time.sleep(1)

    launch_info = btt.LaunchInfo.load_json(path)
    ds = btt.RemoteIterableDataset(launch_info.addresses['DATA'], max_items=2)
    items = [item for item in ds]
    _validate_result(items)
    
    p.join()
Exemplo n.º 8
0
def test_projection():
    launch_args = dict(
        scene=BLENDDIR / 'compositor.blend',
        script=BLENDDIR / 'compositor.blend.py',
        num_instances=1,
        named_sockets=['DATA'],
        background=True,
    )

    expected_color = np.full((200, 320, 3), (0, 1, 0), dtype=np.float32)
    expected_depth = np.full((200, 320, 1), 2.0, dtype=np.float32)

    with btt.BlenderLauncher(**launch_args) as bl:
        addr = bl.launch_info.addresses['DATA']
        ds = btt.RemoteIterableDataset(addr, max_items=1)
        item = next(iter(ds))
        assert_allclose(item['color'], expected_color)
        assert_allclose(item['depth'], expected_depth)
Exemplo n.º 9
0
def test_launcher_app_primaryip(tmp_path):

    # Same with primary ip resolver
    args = copy.deepcopy(LAUNCH_ARGS)
    args['bind_addr'] = 'primaryip'
    p = mp.Process(target=_launch_app, args=(tmp_path,args))
    p.start()

    import time
    path = tmp_path/'launchinfo.json'
    while not Path.exists(path):
        time.sleep(1)    

    launch_info = btt.LaunchInfo.load_json(path)
    print(launch_info.addresses)
    ds = btt.RemoteIterableDataset(launch_info.addresses['DATA'], max_items=2)
    items = [item for item in ds]
    _validate_result(items)
    
    p.join()
Exemplo n.º 10
0
def main():
    # Define how we want to launch Blender
    launch_args = dict(
        scene=Path(__file__).parent/'cube.blend',
        script=Path(__file__).parent/'cube.blend.py',
        num_instances=2, 
        named_sockets=['DATA'],
    )

    # Launch Blender
    with btt.BlenderLauncher(**launch_args) as bl:
        # Create remote dataset and limit max length to 16 elements.
        addr = bl.launch_info.addresses['DATA']
        ds = btt.RemoteIterableDataset(addr, max_items=16)
        dl = data.DataLoader(ds, batch_size=4, num_workers=4)
        
        for item in dl:
            # item is a dict with custom content (see cube.blend.py)
            img, xy = item['image'], item['xy']
            print('Received', img.shape, xy.shape)
Exemplo n.º 11
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--scene',
                        help='Blender scene name to run',
                        default='cube')
    args = parser.parse_args()

    launch_args = dict(scene=EXAMPLES_DIR / f'{args.scene}.blend',
                       script=EXAMPLES_DIR / f'{args.scene}.blend.py',
                       num_instances=INSTANCES,
                       named_sockets=['DATA'])

    with btt.BlenderLauncher(**launch_args) as bl:
        ds = btt.RemoteIterableDataset(bl.launch_info.addresses['DATA'])
        ds.stream_length(NUM_ITEMS)
        dl = data.DataLoader(ds,
                             batch_size=BATCH,
                             num_workers=WORKER_INSTANCES,
                             shuffle=False)

        # Wait to avoid timing startup times of Blender
        time.sleep(5)

        t0 = None
        imgshape = None

        n = 0
        for item in dl:
            if t0 is None:  # 1st is warmup
                t0 = time.time()
                imgshape = item['image'].shape
            n += len(item['image'])
        assert n == NUM_ITEMS

        t1 = time.time()
        N = NUM_ITEMS - BATCH
        B = NUM_ITEMS // BATCH - 1
        print(
            f'Time {(t1-t0)/N:.3f}sec/image, {(t1-t0)/B:.3f}sec/batch, shape {imgshape}'
        )
Exemplo n.º 12
0
def test_dataset():
    launch_args = dict(
        scene='',
        script=BLENDDIR/'dataset.blend.py', 
        num_instances=1,        
        named_sockets=['DATA'],
        background=True,
    )

    with btt.BlenderLauncher(**launch_args) as bl:
        addr = bl.launch_info.addresses['DATA']

        # Note, https://github.com/pytorch/pytorch/issues/44108
        ds = btt.RemoteIterableDataset(addr, max_items=16)
        dl = DataLoader(ds, batch_size=4, num_workers=4, drop_last=False, shuffle=False)
        
        count = 0
        for item in dl:
            assert item['img'].shape == (4,64,64)
            assert item['frameid'].shape == (4,)
            count += 1


        assert count == 4
Exemplo n.º 13
0
def test_launcher():    
    with btt.BlenderLauncher(**LAUNCH_ARGS) as bl:
        addr = bl.launch_info.addresses['DATA']
        ds = btt.RemoteIterableDataset(addr, max_items=2)
        items = [item for item in ds]
        _validate_result(items)
Exemplo n.º 14
0
def run(args):

    # Define how we want to launch Blender
    launch_args = dict(
        scene=Path(__file__).parent / 'supershape.blend',
        script=Path(__file__).parent / 'supershape.blend.py',
        num_instances=SIM_INSTANCES,
        named_sockets=['DATA', 'CTRL'],
    )

    # Create an untrained discriminator.
    dev = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    netD = Discriminator().to(dev)

    # Launch Blender
    with btt.BlenderLauncher(**launch_args) as bl:
        # Create remote dataset
        addr = bl.launch_info.addresses['DATA']
        sim_ds = btt.RemoteIterableDataset(addr, item_transform=item_transform)
        sim_dl = data.DataLoader(sim_ds,
                                 batch_size=BATCH,
                                 num_workers=0,
                                 shuffle=False)

        # Create a control channel to each Blender instance. We use this channel to
        # communicate new shape parameters to be rendered.
        addr = bl.launch_info.addresses['CTRL']
        remotes = [btt.DuplexChannel(a) for a in addr]

        # Fetch images of the target distribution. In the following we assume the
        # target distribution to be unknown.
        if args.random_start:
            mu_m1m2_target = np.random.uniform(0.0, 3,
                                               size=2).astype(np.float32)
        else:
            mu_m1m2_target = [DEFAULT_MEAN_TARGET, DEFAULT_MEAN_TARGET]
        std_m1m2_target = [DEFAULT_STD_TARGET, DEFAULT_STD_TARGET]
        print('Target params:', mu_m1m2_target, std_m1m2_target)

        target_ds = get_target_images(sim_dl,
                                      remotes,
                                      mu_m1m2_target,
                                      std_m1m2_target,
                                      n=BATCH)
        target_dl = data.DataLoader(target_ds,
                                    batch_size=BATCH,
                                    num_workers=0,
                                    shuffle=True)

        # Initial simulation parameters. The parameters in mean and std are off from the target
        # distribution parameters. Note that we especially enlarge the scale of the initial
        # distribution to get explorative behaviour in the beginning.
        if args.random_start:
            mu_m1m2 = np.asarray(mu_m1m2_target) + np.random.randn(2)
        else:
            mu_m1m2 = [1.2, 3.0]
        std_m1m2 = [0.4, 0.4]
        pm = ProbModel(mu_m1m2, std_m1m2)

        # Setup discriminator and simulation optimizer
        optD = optim.Adam(netD.parameters(), lr=5e-5, betas=(0.5, 0.999))
        optS = optim.Adam(pm.parameters(), lr=5e-2, betas=(0.7, 0.999))

        # Get generators for image batches from target and simulation.
        gen_real = infinite_batch_generator(target_dl)
        gen_sim = infinite_batch_generator(sim_dl)
        crit = nn.BCELoss(reduction='none')

        epoch = 0
        b = 0.7  # Baseline to reduce variance of gradient estimator.
        first = True
        param_history = []

        # Send instructions to render supershapes from the starting point.
        samples = pm.sample(BATCH)
        update_simulations(remotes, pm.to_supershape(samples))
        for (real, sim) in zip(gen_real, gen_sim):
            ### Train the discriminator from target and simulation images.
            label = torch.full((BATCH, ),
                               TARGET_LABEL,
                               dtype=torch.float32,
                               device=dev)
            netD.zero_grad()
            target_img = real[0].to(dev)
            output = netD(target_img)
            errD_real = crit(output, label)
            errD_real.mean().backward()
            D_real = output.mean().item()

            sim_img, sim_shape_id = sim
            sim_img = sim_img.to(dev)
            label.fill_(SIM_LABEL)
            output = netD(sim_img)
            errD_sim = crit(output, label)
            errD_sim.mean().backward()
            D_sim = output.mean().item()
            if (D_real - D_sim) < 0.7:
                optD.step()
                print('D step: mean real', D_real, 'mean sim', D_sim)

            ### Optimize the simulation parameters.
            # We update the simulation parameters once the discriminator
            # has started to converge. Note that unlike to GANs the generator
            # (simulation) is giving meaningful output from the very beginning, so we
            # give the discriminator some time to adjust and avoid spurious signals
            # in gradient estimation of the simulation parameters.
            #
            # Note, the rendering function is considered a black-box and we cannot
            # propagate through it. Therefore we reformulate the optimization as
            # minimization of an expectation with the parameters in the distribution
            # the expectation runs over. Using score-function gradients permits gradient
            # based optimization _without_ access to gradients of the render function.
            if not first or (D_real - D_sim) >= 0.7:
                optS.zero_grad()
                label.fill_(TARGET_LABEL)
                with torch.no_grad():
                    output = netD(sim_img)
                    errS_sim = crit(output, label)
                    GD_sim = output.mean().item()

                log_probs = pm.log_prob(samples)
                loss = log_probs[sim_shape_id] * (errS_sim.cpu() - b)
                loss.mean().backward()
                optS.step()

                if first:
                    b = errS_sim.mean()
                else:
                    b = BASELINE_ALPHA * errS_sim.mean() + (1 -
                                                            BASELINE_ALPHA) * b

                print('S step:',
                      pm.m1m2_mean.detach().numpy(),
                      torch.exp(pm.m1m2_log_std).detach().numpy(), 'mean sim',
                      GD_sim)
                first = False
                del log_probs, loss

            # Generate shapes/images according to updated parameters.
            samples = pm.sample(BATCH)
            update_simulations(remotes, pm.to_supershape(samples))

            # Bookkeeping
            param_history.append(pm.readable_params())
            epoch += 1
            if epoch % 5 == 0:
                vutils.save_image(target_img,
                                  'tmp/real_%03d.png' % (epoch),
                                  normalize=True)
                vutils.save_image(sim_img,
                                  'tmp/sim_samples_%03d.png' % (epoch),
                                  normalize=True)
            if epoch > args.num_epochs:
                # Append true target
                target = torch.tensor(
                    np.concatenate((mu_m1m2_target, std_m1m2_target))).float()
                print('Abs.Diff to true params',
                      abs(target - param_history[-1]))
                param_history.append(target)
                break

        param_history = torch.stack(param_history)
        return param_history