Exemplo n.º 1
0
 def __init__(self):
     self.model = BlockInput(name='Model',
                             min_cardinality=0,
                             max_cardinality=1,
                             attribute_type=ParameterType.MODEL)
     self.feature_vector = BlockInput(
         name='FeatureVector',
         min_cardinality=0,
         max_cardinality=1,
         attribute_type=ParameterType.FEATUREVECTOR)
     self.optimizer = BlockParameter(
         name='Optimizer',
         attribute_type=ParameterType.STRING,
         defaultvalue='adam',
         description="Either, 'adam', 'adagrad', 'rmsprop'")
     self.test_size = BlockParameter(
         name='Test Size',
         attribute_type=ParameterType.NUMBER,
         defaultvalue='0.33',
         description="Test Train Split. Ratio of test size")
     self.epochs = BlockParameter(name='Number of Epochs',
                                  attribute_type=ParameterType.NUMBER,
                                  defaultvalue='100',
                                  description="")
     self.classes = BlockParameter(
         name='Number of Classes',
         attribute_type=ParameterType.NUMBER,
         defaultvalue='',
         description="Number of Classification classes")
     self.model_out = BlockOutput(name='Model',
                                  min_cardinality=1,
                                  max_cardinality=100,
                                  attribute_type=ParameterType.MODEL)
Exemplo n.º 2
0
 def __init__(self):
     self.num1 = BlockInput(name='num1',
                            min_cardinality=1,
                            max_cardinality=1,
                            attribute_type=ParameterType.NUMBER)
     self.num2 = BlockInput(name='num2',
                            min_cardinality=1,
                            max_cardinality=1,
                            attribute_type=ParameterType.NUMBER)
     self.output = BlockOutput(name='output',
                               min_cardinality=1,
                               max_cardinality=1,
                               attribute_type=ParameterType.NUMBER)
 def __init__(self):
     self.eeg_data = BlockInput(name='EEGData',
                                min_cardinality=1,
                                max_cardinality=1,
                                attribute_type=ParameterType.EEGDATA)
     self.pre_stimulus_onset = BlockParameter(
         name='PreStimulus onset',
         attribute_type=ParameterType.NUMBER,
         defaultvalue='-0.2',
         description='')
     self.post_stimulus_onset = BlockParameter(
         name='PostStimulus onset',
         attribute_type=ParameterType.NUMBER,
         defaultvalue='0.5',
         description='')
     self.baseline_start_time = BlockParameter(
         name='Baseline Correction Start Time',
         attribute_type=ParameterType.STRING,
         defaultvalue='None',
         description='None means beginning of the data')
     self.baseline_end_time = BlockParameter(
         name='Baseline Correction End Time',
         attribute_type=ParameterType.STRING,
         defaultvalue='0',
         description='None means end of the data')
     self.event_id = BlockParameter(name='Event Id',
                                    attribute_type=ParameterType.STRING,
                                    defaultvalue='None',
                                    description='None means all the events')
     self.eeg_data_output = BlockOutput(name='Epochs',
                                        min_cardinality=1,
                                        max_cardinality=100,
                                        attribute_type=ParameterType.EPOCHS)
Exemplo n.º 4
0
 def __init__(self):
     self.eeg_data = BlockInput(
         name='EEGData',
         min_cardinality=1,
         max_cardinality=1,
         attribute_type=ParameterType.EEGDATA
     )
 def __init__(self):
     self.model = BlockInput(name='Model',
                             min_cardinality=0,
                             max_cardinality=1,
                             attribute_type=ParameterType.MODEL)
     self.units = BlockParameter(name='Number of Units',
                                 attribute_type=ParameterType.NUMBER,
                                 defaultvalue='',
                                 description='Must be an Integer')
     self.activation = BlockParameter(
         name='Activation Function',
         attribute_type=ParameterType.STRING,
         defaultvalue='relu',
         description=
         "Either, 'sigmoid', 'relu', 'softmax', 'elu', 'leaky-relu', 'selu' or 'gelu'"
     )
     self.dropout = BlockParameter(
         name='Dropout',
         attribute_type=ParameterType.STRING,
         defaultvalue='0',
         description="Fraction of the input units to drop")
     self.model_out = BlockOutput(name='Model',
                                  min_cardinality=1,
                                  max_cardinality=100,
                                  attribute_type=ParameterType.MODEL)
Exemplo n.º 6
0
 def __init__(self):
     self.model = BlockInput(name='Model',
                             min_cardinality=0,
                             max_cardinality=1,
                             attribute_type=ParameterType.MODEL)
     self.model_out = BlockOutput(name='Model',
                                  min_cardinality=1,
                                  max_cardinality=100,
                                  attribute_type=ParameterType.MODEL)
Exemplo n.º 7
0
 def __init__(self):
     self.epochs = BlockInput(name='Epochs',
                              min_cardinality=1,
                              max_cardinality=1,
                              attribute_type=ParameterType.EPOCHS)
     self.feature_vector = BlockOutput(
         name='FeatureVector',
         min_cardinality=1,
         max_cardinality=100,
         attribute_type=ParameterType.FEATUREVECTOR)
Exemplo n.º 8
0
 def __init__(self):
     self.epochs = BlockInput(
         name='Epochs',
         min_cardinality=1,
         max_cardinality=1,
         attribute_type=ParameterType.EPOCHS
     )
     self.epochs_output = BlockOutput(
         name='Epochs',
         min_cardinality=1,
         max_cardinality=100,
         attribute_type=ParameterType.EPOCHS
     )
 def __init__(self):
     self.feature_vector = BlockInput(name='FeatureVector',
                                      min_cardinality=1,
                                      max_cardinality=1,
                                      attribute_type=ParameterType.EPOCHS)
     self.labels = BlockParameter(
         name='Labels',
         attribute_type=ParameterType.STRING_ARRAY,
         defaultvalue='',
         description=
         'All comma separated event ids are considered as one class.<br>Event id will not be considered if not added'
     )
     self.feature_vector_out = BlockOutput(
         name='FeatureVector',
         min_cardinality=1,
         max_cardinality=100,
         attribute_type=ParameterType.FEATUREVECTOR)
Exemplo n.º 10
0
 def __init__(self):
     self.eeg_data = BlockInput(
         name='EEGData',
         min_cardinality=1,
         max_cardinality=1,
         attribute_type=ParameterType.EEGDATA
     )
     self.channels = BlockParameter(
         name='Channels',
         attribute_type=ParameterType.STRING_ARRAY,
         defaultvalue='',
         description='Select channel'
     )
     self.eeg_data_output = BlockOutput(
         name='EEGData',
         min_cardinality=1,
         max_cardinality=100,
         attribute_type=ParameterType.EEGDATA
     )
Exemplo n.º 11
0
 def __init__(self):
     self.eeg_data = BlockInput(name='EEGData',
                                min_cardinality=1,
                                max_cardinality=1,
                                attribute_type=ParameterType.EEGDATA)
     self.low_cutoff_freq = BlockParameter(
         name='Low Cutoff Frequency',
         attribute_type=ParameterType.NUMBER,
         defaultvalue='None',
         description='If None the data are only low-passed')
     self.high_cutoff_freq = BlockParameter(
         name='High Cutoff Frequency',
         attribute_type=ParameterType.NUMBER,
         defaultvalue='None',
         description='If None the data are only high-passed')
     self.eeg_data_output = BlockOutput(
         name='EEGData',
         min_cardinality=1,
         max_cardinality=100,
         attribute_type=ParameterType.EEGDATA)