Exemplo n.º 1
0
 def testNNMultipleInputs(self):
   nn = blocks_std.NN(10, bias=blocks_std.Bias(0), act=tf.tanh)
   x = [tf.placeholder(dtype=tf.float32, shape=[5, 7]),
        tf.placeholder(dtype=tf.float32, shape=[5, 3]),
        tf.placeholder(dtype=tf.float32, shape=[5, 5])]
   y = nn(*x)
   xs = self.CheckNN(y, nn, 'Tanh')
   self.assertEqual(len(x), len(xs))
   for u, v in zip(x, xs):
     self.assertIs(u, v)
  def __init__(self,
               depth,
               bias=LSTMBiasInit,
               initializer=block_util.RsqrtInitializer(),
               name=None):
    super(LSTM, self).__init__([depth], name)

    with self._BlockScope():
      self._depth = depth
      self._nn = blocks_std.NN(
          4 * depth, bias=bias, act=None, initializer=initializer)
      self._hidden_linear = blocks_std.Linear(
          4 * depth, initializer=initializer)
Exemplo n.º 3
0
 def testNNWithBiasWithAct(self):
   nn = blocks_std.NN(10, bias=blocks_std.Bias(0), act=tf.square)
   x = tf.placeholder(dtype=tf.float32, shape=[5, 7])
   y = nn(x)
   self.assertIs(x, self.CheckNN(y, nn, 'Square')[0])
Exemplo n.º 4
0
 def testNNWithoutBiasWithAct(self):
   nn = blocks_std.NN(10, act=tf.nn.relu, bias=None)
   x = tf.placeholder(dtype=tf.float32, shape=[5, 7])
   y = nn(x)
   self.assertIs(x, self.CheckNN(y, nn, 'Relu')[0])
Exemplo n.º 5
0
 def testNNWithoutActWithoutBias(self):
   nn = blocks_std.NN(10, act=None, bias=None)
   x = tf.placeholder(dtype=tf.float32, shape=[5, 7])
   y = nn(x)
   self.assertIs(x, self.CheckNN(y, nn)[0])