Exemplo n.º 1
0
    def test_add_vcc_five(self):
	src1_data = (1.0+2.0j, 3.0+4.0j, 5.0+6.0j, 7.0+8.0j, 9.0+10.0j)
	src2_data = (11.0+12.0j, 13.0+14.0j, 15.0+16.0j, 17.0+18.0j, 19.0+20.0j)
	src3_data = (21.0+22.0j, 23.0+24.0j, 25.0+26.0j, 27.0+28.0j, 29.0+30.0j)
	expected_result = (33.0+36.0j, 39.0+42.0j, 45.0+48.0j, 51.0+54.0j, 57.0+60.0j)
	op = blocks_swig.add_cc(5)
	self.help_cc(5, (src1_data, src2_data, src3_data), expected_result, op)
Exemplo n.º 2
0
 def test_add_vcc_one(self):
     src1_data = (1.0 + 2.0j, )
     src2_data = (3.0 + 4.0j, )
     src3_data = (5.0 + 6.0j, )
     expected_result = (9.0 + 12j, )
     op = blocks_swig.add_cc(1)
     self.help_cc(1, (src1_data, src2_data, src3_data), expected_result, op)
Exemplo n.º 3
0
 def test_001_detect (self):
     """ Send two bursts, with zeros in between, and check
     they are both detected at the correct position and no
     false alarms occur """
     n_zeros = 15
     fft_len = 32
     cp_len = 4
     sig_len = (fft_len + cp_len) * 10
     sync_symbol = [(random.randint(0, 1)*2)-1 for x in range(fft_len/2)] * 2
     tx_signal = [0,] * n_zeros + \
                 sync_symbol[-cp_len:] + \
                 sync_symbol + \
                 [(random.randint(0, 1)*2)-1 for x in range(sig_len)]
     tx_signal = tx_signal * 2
     add = blocks.add_cc()
     sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len)
     sink_freq   = blocks.vector_sink_f()
     sink_detect = blocks.vector_sink_b()
     self.tb.connect(blocks.vector_source_c(tx_signal), (add, 0))
     self.tb.connect(analog.noise_source_c(analog.GR_GAUSSIAN, .01), (add, 1))
     self.tb.connect(add, sync)
     self.tb.connect((sync, 0), sink_freq)
     self.tb.connect((sync, 1), sink_detect)
     self.tb.run()
     sig1_detect = sink_detect.data()[0:len(tx_signal)/2]
     sig2_detect = sink_detect.data()[len(tx_signal)/2:]
     self.assertTrue(abs(sig1_detect.index(1) - (n_zeros + fft_len + cp_len)) < cp_len)
     self.assertTrue(abs(sig2_detect.index(1) - (n_zeros + fft_len + cp_len)) < cp_len)
     self.assertEqual(numpy.sum(sig1_detect), 1)
     self.assertEqual(numpy.sum(sig2_detect), 1)
Exemplo n.º 4
0
    def test_003_multiburst(self):
        """ Send several bursts, see if the number of detects is correct.
        Burst lengths and content are random.
        """
        n_bursts = 42
        fft_len = 32
        cp_len = 4
        tx_signal = []
        for i in xrange(n_bursts):
            sync_symbol = [(random.randint(0, 1) * 2) - 1
                           for x in range(fft_len / 2)] * 2
            tx_signal += [0,] * random.randint(0, 2*fft_len) + \
                         sync_symbol[-cp_len:] + \
                         sync_symbol + \
                         [(random.randint(0, 1)*2)-1 for x in range(fft_len * random.randint(5,23))]
        add = blocks.add_cc()
        sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len)
        sink_freq = blocks.vector_sink_f()
        sink_detect = blocks.vector_sink_b()
        channel = channels.channel_model(0.005)
        self.tb.connect(blocks.vector_source_c(tx_signal), channel, sync)
        self.tb.connect((sync, 0), sink_freq)
        self.tb.connect((sync, 1), sink_detect)
        self.tb.run()
        n_bursts_detected = numpy.sum(sink_detect.data())
        # We allow for one false alarm or missed burst
        self.assertTrue(
            abs(n_bursts_detected - n_bursts) <= 1,
            msg="""Because of statistics, it is possible (though unlikely)
that the number of detected bursts differs slightly. If the number of detects is
off by one or two, run the test again and see what happen.
Detection error was: %d """ % (numpy.sum(sink_detect.data()) - n_bursts))
Exemplo n.º 5
0
    def test_003_multiburst (self):
        """ Send several bursts, see if the number of detects is correct.
        Burst lengths and content are random.
        """
        n_bursts = 42
        fft_len = 32
        cp_len = 4
        tx_signal = []
        for i in xrange(n_bursts):
            sync_symbol = [(random.randint(0, 1)*2)-1 for x in range(fft_len/2)] * 2
            tx_signal += [0,] * random.randint(0, 2*fft_len) + \
                         sync_symbol[-cp_len:] + \
                         sync_symbol + \
                         [(random.randint(0, 1)*2)-1 for x in range(fft_len * random.randint(5,23))]
        add = blocks.add_cc()
        sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len)
        sink_freq   = blocks.vector_sink_f()
        sink_detect = blocks.vector_sink_b()
        channel = channels.channel_model(0.005)
        self.tb.connect(blocks.vector_source_c(tx_signal), channel, sync)
        self.tb.connect((sync, 0), sink_freq)
        self.tb.connect((sync, 1), sink_detect)
        self.tb.run()
        n_bursts_detected = numpy.sum(sink_detect.data())
        # We allow for one false alarm or missed burst
        self.assertTrue(abs(n_bursts_detected - n_bursts) <= 1,
                msg="""Because of statistics, it is possible (though unlikely)
that the number of detected bursts differs slightly. If the number of detects is
off by one or two, run the test again and see what happen.
Detection error was: %d """ % (numpy.sum(sink_detect.data()) - n_bursts)
        )
Exemplo n.º 6
0
 def run_flow_graph(sync_sym1, sync_sym2, data_sym):
     top_block = gr.top_block()
     carr_offset = random.randint(-max_offset/2, max_offset/2) * 2
     tx_data = shift_tuple(sync_sym1, carr_offset) + \
               shift_tuple(sync_sym2, carr_offset) + \
               shift_tuple(data_sym,  carr_offset)
     channel = [rand_range(min_chan_ampl, max_chan_ampl) * numpy.exp(1j * rand_range(0, 2 * numpy.pi)) for x in range(fft_len)]
     src = blocks.vector_source_c(tx_data, False, fft_len)
     chan = blocks.multiply_const_vcc(channel)
     noise = analog.noise_source_c(analog.GR_GAUSSIAN, wgn_amplitude)
     add = blocks.add_cc(fft_len)
     chanest = digital.ofdm_chanest_vcvc(sync_sym1, sync_sym2, 1)
     sink = blocks.vector_sink_c(fft_len)
     top_block.connect(src, chan, (add, 0), chanest, sink)
     top_block.connect(noise, blocks.stream_to_vector(gr.sizeof_gr_complex, fft_len), (add, 1))
     top_block.run()
     channel_est = None
     carr_offset_hat = 0
     rx_sym_est = [0,] * fft_len
     tags = sink.tags()
     for tag in tags:
         if pmt.symbol_to_string(tag.key) == 'ofdm_sync_carr_offset':
             carr_offset_hat = pmt.to_long(tag.value)
             self.assertEqual(carr_offset, carr_offset_hat)
         if pmt.symbol_to_string(tag.key) == 'ofdm_sync_chan_taps':
             channel_est = shift_tuple(pmt.c32vector_elements(tag.value), carr_offset)
     shifted_carrier_mask = shift_tuple(carrier_mask, carr_offset)
     for i in range(fft_len):
         if shifted_carrier_mask[i] and channel_est[i]:
             self.assertAlmostEqual(channel[i], channel_est[i], places=0)
             rx_sym_est[i] = (sink.data()[i] / channel_est[i]).real
     return (carr_offset, list(shift_tuple(rx_sym_est, -carr_offset_hat)))
Exemplo n.º 7
0
 def test_001_detect(self):
     """ Send two bursts, with zeros in between, and check
     they are both detected at the correct position and no
     false alarms occur """
     n_zeros = 15
     fft_len = 32
     cp_len = 4
     sig_len = (fft_len + cp_len) * 10
     sync_symbol = [(random.randint(0, 1) * 2) - 1
                    for x in range(fft_len / 2)] * 2
     tx_signal = [0,] * n_zeros + \
                 sync_symbol[-cp_len:] + \
                 sync_symbol + \
                 [(random.randint(0, 1)*2)-1 for x in range(sig_len)]
     tx_signal = tx_signal * 2
     add = blocks.add_cc()
     sync = digital.ofdm_sync_sc_cfb(fft_len, cp_len)
     sink_freq = blocks.vector_sink_f()
     sink_detect = blocks.vector_sink_b()
     self.tb.connect(blocks.vector_source_c(tx_signal), (add, 0))
     self.tb.connect(analog.noise_source_c(analog.GR_GAUSSIAN, .01),
                     (add, 1))
     self.tb.connect(add, sync)
     self.tb.connect((sync, 0), sink_freq)
     self.tb.connect((sync, 1), sink_detect)
     self.tb.run()
     sig1_detect = sink_detect.data()[0:len(tx_signal) / 2]
     sig2_detect = sink_detect.data()[len(tx_signal) / 2:]
     self.assertTrue(
         abs(sig1_detect.index(1) - (n_zeros + fft_len + cp_len)) < cp_len)
     self.assertTrue(
         abs(sig2_detect.index(1) - (n_zeros + fft_len + cp_len)) < cp_len)
     self.assertEqual(numpy.sum(sig1_detect), 1)
     self.assertEqual(numpy.sum(sig2_detect), 1)
Exemplo n.º 8
0
    def test_add_vcc_one(self):
	src1_data = (1.0+2.0j,)
	src2_data = (3.0+4.0j,)
	src3_data = (5.0+6.0j,)
	expected_result = (9.0+12j,)
	op = blocks_swig.add_cc(1)
	self.help_cc(1, (src1_data, src2_data, src3_data), expected_result, op)
Exemplo n.º 9
0
 def test_add_vcc_five(self):
     src1_data = (1.0 + 2.0j, 3.0 + 4.0j, 5.0 + 6.0j, 7.0 + 8.0j,
                  9.0 + 10.0j)
     src2_data = (11.0 + 12.0j, 13.0 + 14.0j, 15.0 + 16.0j, 17.0 + 18.0j,
                  19.0 + 20.0j)
     src3_data = (21.0 + 22.0j, 23.0 + 24.0j, 25.0 + 26.0j, 27.0 + 28.0j,
                  29.0 + 30.0j)
     expected_result = (33.0 + 36.0j, 39.0 + 42.0j, 45.0 + 48.0j,
                        51.0 + 54.0j, 57.0 + 60.0j)
     op = blocks_swig.add_cc(5)
     self.help_cc(5, (src1_data, src2_data, src3_data), expected_result, op)
Exemplo n.º 10
0
    def test_000(self):
        N = 1000  # number of samples to use
        M = 5  # Number of channels
        fs = 1000  # baseband sampling rate
        ifs = M * fs  # input samp rate to decimator
        channel = 0  # Extract channel 0

        taps = filter.firdes.low_pass_2(
            1,
            ifs,
            fs / 2,
            fs / 10,
            attenuation_dB=80,
            window=filter.firdes.WIN_BLACKMAN_hARRIS)

        signals = list()
        add = blocks.add_cc()
        freqs = [-200, -100, 0, 100, 200]
        for i in xrange(len(freqs)):
            f = freqs[i] + (M / 2 - M + i + 1) * fs
            data = sig_source_c(ifs, f, 1, N)
            signals.append(blocks.vector_source_c(data))
            self.tb.connect(signals[i], (add, i))

        head = blocks.head(gr.sizeof_gr_complex, N)
        s2ss = blocks.stream_to_streams(gr.sizeof_gr_complex, M)
        pfb = filter.pfb_decimator_ccf(M, taps, channel)
        snk = blocks.vector_sink_c()

        self.tb.connect(add, head, s2ss)
        for i in xrange(M):
            self.tb.connect((s2ss, i), (pfb, i))
        self.tb.connect(pfb, snk)

        self.tb.run()

        Ntest = 50
        L = len(snk.data())
        t = map(lambda x: float(x) / fs, xrange(L))

        # Create known data as complex sinusoids for the baseband freq
        # of the extracted channel is due to decimator output order.
        phase = 0
        expected_data = map(lambda x: math.cos(2.*math.pi*freqs[2]*x+phase) + \
                                1j*math.sin(2.*math.pi*freqs[2]*x+phase), t)

        dst_data = snk.data()

        self.assertComplexTuplesAlmostEqual(expected_data[-Ntest:],
                                            dst_data[-Ntest:], 4)
Exemplo n.º 11
0
    def __init__(self, constellation, f, N0=0.25, seed=-666L):
        """
        constellation - a constellation object used for modulation.
        f - a finite state machine specification used for coding.
        N0 - noise level
        seed - random seed
        """
        super(trellis_tb, self).__init__()
        # packet size in bits (make it multiple of 16 so it can be packed in a short)
        packet_size = 1024 * 16
        # bits per FSM input symbol
        bitspersymbol = int(round(math.log(f.I()) /
                                  math.log(2)))  # bits per FSM input symbol
        # packet size in trellis steps
        K = packet_size / bitspersymbol

        # TX
        src = blocks.lfsr_32k_source_s()
        # packet size in shorts
        src_head = blocks.head(gr.sizeof_short, packet_size / 16)
        # unpack shorts to symbols compatible with the FSM input cardinality
        s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol, gr.GR_MSB_FIRST)
        # initial FSM state = 0
        enc = trellis.encoder_ss(f, 0)
        mod = digital.chunks_to_symbols_sc(constellation.points(), 1)

        # CHANNEL
        add = blocks.add_cc()
        noise = analog.noise_source_c(analog.GR_GAUSSIAN, math.sqrt(N0 / 2),
                                      seed)

        # RX
        # data preprocessing to generate metrics for Viterbi
        metrics = trellis.constellation_metrics_cf(constellation.base(),
                                                   digital.TRELLIS_EUCLIDEAN)
        # Put -1 if the Initial/Final states are not set.
        va = trellis.viterbi_s(f, K, 0, -1)
        # pack FSM input symbols to shorts
        fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol, gr.GR_MSB_FIRST)
        # check the output
        self.dst = blocks.check_lfsr_32k_s()

        self.connect(src, src_head, s2fsmi, enc, mod)
        self.connect(mod, (add, 0))
        self.connect(noise, (add, 1))
        self.connect(add, metrics, va, fsmi2s, self.dst)
Exemplo n.º 12
0
    def test_000(self):
        N = 1000         # number of samples to use
        M = 5            # Number of channels
        fs = 1000        # baseband sampling rate
        ifs = M*fs       # input samp rate to decimator
        channel = 0      # Extract channel 0

        taps = filter.firdes.low_pass_2(1, ifs, fs/2, fs/10,
                                        attenuation_dB=80,
                                        window=filter.firdes.WIN_BLACKMAN_hARRIS)

        signals = list()
        add = blocks.add_cc()
        freqs = [-200, -100, 0, 100, 200]
        for i in xrange(len(freqs)):
            f = freqs[i] + (M/2-M+i+1)*fs
            data = sig_source_c(ifs, f, 1, N)
            signals.append(blocks.vector_source_c(data))
            self.tb.connect(signals[i], (add,i))

        head = blocks.head(gr.sizeof_gr_complex, N)
        s2ss = blocks.stream_to_streams(gr.sizeof_gr_complex, M)
        pfb = filter.pfb_decimator_ccf(M, taps, channel)
        snk = blocks.vector_sink_c()

        self.tb.connect(add, head, s2ss)
        for i in xrange(M):
            self.tb.connect((s2ss,i), (pfb,i))
        self.tb.connect(pfb, snk)

        self.tb.run() 

        Ntest = 50
        L = len(snk.data())
        t = map(lambda x: float(x)/fs, xrange(L))

        # Create known data as complex sinusoids for the baseband freq
        # of the extracted channel is due to decimator output order.
        phase = 0
        expected_data = map(lambda x: math.cos(2.*math.pi*freqs[2]*x+phase) + \
                                1j*math.sin(2.*math.pi*freqs[2]*x+phase), t)

        dst_data = snk.data()

        self.assertComplexTuplesAlmostEqual(expected_data[-Ntest:], dst_data[-Ntest:], 4)
Exemplo n.º 13
0
    def __init__(self, noise_voltage, freq, timing):
        gr.hier_block2.__init__(self, "channel_model",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex),
                                gr.io_signature(1, 1, gr.sizeof_gr_complex))

        timing_offset = filter.fractional_resampler_cc(0, timing)
        noise_adder = blocks.add_cc()
        noise = analog.noise_source_c(analog.GR_GAUSSIAN, noise_voltage, 0)
        freq_offset = analog.sig_source_c(1, analog.GR_SIN_WAVE, freq, 1.0,
                                          0.0)
        mixer_offset = blocks.multiply_cc()

        self.connect(self, timing_offset)
        self.connect(timing_offset, (mixer_offset, 0))
        self.connect(freq_offset, (mixer_offset, 1))
        self.connect(mixer_offset, (noise_adder, 1))
        self.connect(noise, (noise_adder, 0))
        self.connect(noise_adder, self)
Exemplo n.º 14
0
 def run_flow_graph(sync_sym1, sync_sym2, data_sym):
     top_block = gr.top_block()
     carr_offset = random.randint(-max_offset / 2, max_offset / 2) * 2
     tx_data = shift_tuple(sync_sym1, carr_offset) + \
               shift_tuple(sync_sym2, carr_offset) + \
               shift_tuple(data_sym,  carr_offset)
     channel = [
         rand_range(min_chan_ampl, max_chan_ampl) *
         numpy.exp(1j * rand_range(0, 2 * numpy.pi))
         for x in range(fft_len)
     ]
     src = blocks.vector_source_c(tx_data, False, fft_len)
     chan = blocks.multiply_const_vcc(channel)
     noise = analog.noise_source_c(analog.GR_GAUSSIAN, wgn_amplitude)
     add = blocks.add_cc(fft_len)
     chanest = digital.ofdm_chanest_vcvc(sync_sym1, sync_sym2, 1)
     sink = blocks.vector_sink_c(fft_len)
     top_block.connect(src, chan, (add, 0), chanest, sink)
     top_block.connect(
         noise, blocks.stream_to_vector(gr.sizeof_gr_complex, fft_len),
         (add, 1))
     top_block.run()
     channel_est = None
     carr_offset_hat = 0
     rx_sym_est = [
         0,
     ] * fft_len
     tags = sink.tags()
     for tag in tags:
         if pmt.symbol_to_string(tag.key) == 'ofdm_sync_carr_offset':
             carr_offset_hat = pmt.to_long(tag.value)
             self.assertEqual(carr_offset, carr_offset_hat)
         if pmt.symbol_to_string(tag.key) == 'ofdm_sync_chan_taps':
             channel_est = shift_tuple(
                 pmt.c32vector_elements(tag.value), carr_offset)
     shifted_carrier_mask = shift_tuple(carrier_mask, carr_offset)
     for i in range(fft_len):
         if shifted_carrier_mask[i] and channel_est[i]:
             self.assertAlmostEqual(channel[i],
                                    channel_est[i],
                                    places=0)
             rx_sym_est[i] = (sink.data()[i] / channel_est[i]).real
     return (carr_offset, list(shift_tuple(rx_sym_est,
                                           -carr_offset_hat)))
Exemplo n.º 15
0
    def __init__(self, constellation, f, N0=0.25, seed=-666L):
        """
        constellation - a constellation object used for modulation.
        f - a finite state machine specification used for coding.
        N0 - noise level
        seed - random seed
        """
        super(trellis_tb, self).__init__()
        # packet size in bits (make it multiple of 16 so it can be packed in a short)
        packet_size = 1024 * 16
        # bits per FSM input symbol
        bitspersymbol = int(round(math.log(f.I()) / math.log(2)))  # bits per FSM input symbol
        # packet size in trellis steps
        K = packet_size / bitspersymbol

        # TX
        src = blocks.lfsr_32k_source_s()
        # packet size in shorts
        src_head = blocks.head(gr.sizeof_short, packet_size / 16)
        # unpack shorts to symbols compatible with the FSM input cardinality
        s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol, gr.GR_MSB_FIRST)
        # initial FSM state = 0
        enc = trellis.encoder_ss(f, 0)
        mod = digital.chunks_to_symbols_sc(constellation.points(), 1)

        # CHANNEL
        add = blocks.add_cc()
        noise = analog.noise_source_c(analog.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

        # RX
        # data preprocessing to generate metrics for Viterbi
        metrics = trellis.constellation_metrics_cf(constellation.base(), digital.TRELLIS_EUCLIDEAN)
        # Put -1 if the Initial/Final states are not set.
        va = trellis.viterbi_s(f, K, 0, -1)
        # pack FSM input symbols to shorts
        fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol, gr.GR_MSB_FIRST)
        # check the output
        self.dst = blocks.check_lfsr_32k_s()

        self.connect(src, src_head, s2fsmi, enc, mod)
        self.connect(mod, (add, 0))
        self.connect(noise, (add, 1))
        self.connect(add, metrics, va, fsmi2s, self.dst)
    def __init__(self, noise_voltage, freq, timing):
        gr.hier_block2.__init__(
            self,
            "channel_model",
            gr.io_signature(1, 1, gr.sizeof_gr_complex),
            gr.io_signature(1, 1, gr.sizeof_gr_complex),
        )

        timing_offset = filter.fractional_interpolator_cc(0, timing)
        noise_adder = blocks.add_cc()
        noise = analog.noise_source_c(analog.GR_GAUSSIAN, noise_voltage, 0)
        freq_offset = analog.sig_source_c(1, analog.GR_SIN_WAVE, freq, 1.0, 0.0)
        mixer_offset = blocks.multiply_cc()

        self.connect(self, timing_offset)
        self.connect(timing_offset, (mixer_offset, 0))
        self.connect(freq_offset, (mixer_offset, 1))
        self.connect(mixer_offset, (noise_adder, 1))
        self.connect(noise, (noise_adder, 0))
        self.connect(noise_adder, self)
Exemplo n.º 17
0
    def test_000(self):
        N = 1000         # number of samples to use
        M = 5            # Number of channels to channelize
        fs = 1000        # baseband sampling rate
        ifs = M*fs       # input samp rate to channelizer

        taps = filter.firdes.low_pass_2(1, ifs, 500, 50,
                                        attenuation_dB=80,
                                        window=filter.firdes.WIN_BLACKMAN_hARRIS)

        signals = list()
        add = blocks.add_cc()
        freqs = [-200, -100, 0, 100, 200]
        for i in xrange(len(freqs)):
            f = freqs[i] + (M/2-M+i+1)*fs
            data = sig_source_c(ifs, f, 1, N)
            signals.append(blocks.vector_source_c(data))
            self.tb.connect(signals[i], (add,i))

        s2ss = blocks.stream_to_streams(gr.sizeof_gr_complex, M)
        pfb = filter.pfb_channelizer_ccf(M, taps, 1)

        self.tb.connect(add, s2ss)

        snks = list()
        for i in xrange(M):
            snks.append(blocks.vector_sink_c())
            self.tb.connect((s2ss,i), (pfb,i))
            self.tb.connect((pfb, i), snks[i])

        self.tb.run() 

        Ntest = 50
        L = len(snks[0].data())
        t = map(lambda x: float(x)/fs, xrange(L))

        # Adjusted phase rotations for data
        p0 = 0
        p1 =  math.pi*0.51998885
        p2 = -math.pi*0.96002233
        p3 =  math.pi*0.96002233
        p4 = -math.pi*0.51998885

        # Create known data as complex sinusoids at the different baseband freqs
        # the different channel numbering is due to channelizer output order.
        expected0_data = map(lambda x: math.cos(2.*math.pi*freqs[2]*x+p0) + \
                                       1j*math.sin(2.*math.pi*freqs[2]*x+p0), t)
        expected1_data = map(lambda x: math.cos(2.*math.pi*freqs[3]*x+p1) + \
                                       1j*math.sin(2.*math.pi*freqs[3]*x+p1), t)
        expected2_data = map(lambda x: math.cos(2.*math.pi*freqs[4]*x+p2) + \
                                       1j*math.sin(2.*math.pi*freqs[4]*x+p2), t)
        expected3_data = map(lambda x: math.cos(2.*math.pi*freqs[0]*x+p3) + \
                                       1j*math.sin(2.*math.pi*freqs[0]*x+p3), t)
        expected4_data = map(lambda x: math.cos(2.*math.pi*freqs[1]*x+p4) + \
                                       1j*math.sin(2.*math.pi*freqs[1]*x+p4), t)

        dst0_data = snks[0].data()
        dst1_data = snks[1].data()
        dst2_data = snks[2].data()
        dst3_data = snks[3].data()
        dst4_data = snks[4].data()

        self.assertComplexTuplesAlmostEqual(expected0_data[-Ntest:], dst0_data[-Ntest:], 3)
        self.assertComplexTuplesAlmostEqual(expected1_data[-Ntest:], dst1_data[-Ntest:], 3)
        self.assertComplexTuplesAlmostEqual(expected2_data[-Ntest:], dst2_data[-Ntest:], 3)
        self.assertComplexTuplesAlmostEqual(expected3_data[-Ntest:], dst3_data[-Ntest:], 3)
        self.assertComplexTuplesAlmostEqual(expected4_data[-Ntest:], dst4_data[-Ntest:], 3)
Exemplo n.º 18
0
 def test_add_cc(self):
     src1_data = (1+1j,  2+2j, 3+3j, 4+4j, 5+5j)
     src2_data = (8+8j, -3-3j, 4+4j, 8+8j, 2+2j)
     expected_result = (9+9j, -1-1j, 7+7j, 12+12j, 7+7j)
     op = blocks_swig.add_cc()
     self.help_cc((src1_data, src2_data), expected_result, op)
Exemplo n.º 19
0
 def test_add_cc(self):
     src1_data = (1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j, 5 + 5j)
     src2_data = (8 + 8j, -3 - 3j, 4 + 4j, 8 + 8j, 2 + 2j)
     expected_result = (9 + 9j, -1 - 1j, 7 + 7j, 12 + 12j, 7 + 7j)
     op = blocks_swig.add_cc()
     self.help_cc((src1_data, src2_data), expected_result, op)