Exemplo n.º 1
0
def bls_search(lc, target_ID, save_path):
    """
    Perform bls analysis using foreman-mackey's bls.py function
    """
    durations = np.linspace(0.05, 0.2, 22) * u.day
    model = BLS(lc.time * u.day, lc.flux)
    results = model.autopower(durations, frequency_factor=5.0)

    # Find the period and epoch of the peak
    index = np.argmax(results.power)
    period = results.period[index]
    t0 = results.transit_time[index]
    duration = results.duration[index]
    transit_info = model.compute_stats(period, duration, t0)

    epoch = transit_info['transit_times'][0]

    fig, ax = plt.subplots(1, 1, figsize=(8, 4))

    # Highlight the harmonics of the peak period
    ax.axvline(period.value, alpha=0.4, lw=3)
    for n in range(2, 10):
        ax.axvline(n * period.value, alpha=0.4, lw=1, linestyle="dashed")
        ax.axvline(period.value / n, alpha=0.4, lw=1, linestyle="dashed")

    # Plot the periodogram
    ax.plot(results.period, results.power, "k", lw=0.5)

    ax.set_xlim(results.period.min().value, results.period.max().value)
    ax.set_xlabel("period [days]")
    ax.set_ylabel("log likelihood")
    ax.set_title('{} - BLS Periodogram'.format(target_ID))
    #plt.savefig(save_path + '{} - BLS Periodogram.png'.format(target_ID))
    #    plt.close(fig)

    # Fold by most significant period
    phase_fold_plot(lc.time * u.day,
                    lc.flux,
                    period,
                    epoch,
                    target_ID,
                    save_path,
                    title='{} Lightcurve folded by {} days'.format(
                        target_ID, period))

    return results, transit_info
Exemplo n.º 2
0
def boxleastsq(BJD, flux, mindur=0.5, maxdur=10.0):
    '''
	Box least squares module that uses bls.py from:
		https://github.com/dfm/bls.py

	Input:
		BJD     : array  - barycentric julian dates.
		flux    : array  - the normalized flux.
		mindur  : float  - the minimum duration of the transist.
		maxdur  : float  - the maximum duration of the transist.

	Output:
		BLSdict : dict   - dictionary containing period, mid transit time, transit duration, transit
						   depth, and the error on the depth.
		results : object - the results from the BLS.
	'''

    ## BOX LEASTSQUARE
    durations = np.linspace(mindur, maxdur, 10) * u.hour
    model = BLS(BJD * u.day, flux)
    results = model.autopower(durations,
                              minimum_n_transit=2,
                              frequency_factor=5.0)

    period = results.period[np.argmax(results.power)].value
    t0 = results.transit_time[np.argmax(results.power)].value
    dur = results.duration[np.argmax(results.power)].value
    dep = results.depth[np.argmax(results.power)]
    errdep = results.depth_err[np.argmax(results.power)]

    dep_even = model.compute_stats(period, dur, t0)['depth_even'][0]
    dep_odd = model.compute_stats(period, dur, t0)['depth_odd'][0]

    BLSdict = {
        'period': period,
        'midtransit_time': t0,
        'duration': dur,
        'depth': dep,
        'errdepth': errdep,
        'depth_even': dep_even,
        'depth_odd': dep_odd
    }

    return BLSdict, results
Exemplo n.º 3
0
    def do_bls(self):
        """
        """
        self.bls_time = self.time[30:-20]
        self.bls_flux = self.det_flux[30:-20]

        durations = np.linspace(0.05, 0.2, 10)
        bls_model = BLS(self.bls_time, self.bls_flux)
        bls_results = bls_model.autopower(durations, frequency_factor=5.0)
        self.bls_results = bls_results

        index = np.argmax(bls_results.power)
        bls_period = bls_results.period[index]
        bls_t0 = bls_results.transit_time[index]
        bls_duration = bls_results.duration[index]
        bls_depth = bls_results.depth[index]

        self.bls_model = bls_model
        self.bls_period = bls_period
        self.bls_t0 = bls_t0
        self.bls_depth = bls_depth
        self.bls_duration = bls_duration
Exemplo n.º 4
0
            '{} LombScargle Periodogram for original lc'.format(target_ID))
        #ls_plot.show(block=True)
        ls_fig.savefig(save_path +
                       '{} - Lomb-Sacrgle Periodogram for original lc.png'.
                       format(target_ID))
        plt.close(ls_fig)
        i = np.argmax(power)
        freq_rot = freq[i]
        p_rot = 1 / freq_rot
        print('Rotation Period = {:.3f}d'.format(p_rot))

        # From BLS
        durations = np.linspace(0.05, 0.2, 100) * u.day
        #model = BoxLeastSquares(lc_30min.time*u.day, normalized_flux)
        model = BLS(lc_30min.time * u.day, normalized_flux)
        results = model.autopower(durations, frequency_factor=5.0)
        rot_index = np.argmax(results.power)
        rot_period = results.period[rot_index]
        rot_t0 = results.transit_time[rot_index]
        print("Rotation Period from BLS of original = {}d".format(rot_period))

        ########################### batman stuff ######################################
        #      type_of_planet = 'Hot Jupiter'
        #     stellar_type = 'F or G'
        #params = batman.TransitParams()       #object to store transit parameters
        #print("batman works y'all")
        #params.t0 = -4.5                      #time of inferior conjunction
        #params.per = 8.0                      #orbital period (days) - try 0.5, 1, 2, 4, 8 & 10d periods
        # Change for type of star
        #params.rp = 0.05                      #planet radius (in units of stellar radii) - Try between 0.01 and 0.1 (F/G) or 0.025 to 0.18 (K/M)
        # For a: 25 for 10d; 17 for 8d; 10 for 4d; 4-8 (6) for 2 day; 2-5  for 1d; 1-3 (or 8?) for 0.5d
Exemplo n.º 5
0
     
     t_cut = lc_30min.time[~near_peak_or_trough]
     flux_cut = combined_flux[~near_peak_or_trough]
     flux_err_cut = lc_30min.flux_err[~near_peak_or_trough]
     
 #    flux = combined_flux
 #    frequency, power = LombScargle(lc_30min.time, flux).autopower()
 #    plt.plot(frequency, power)
 #    i = np.argmax(power)
 #    freq_rot = frequency[i]
 #    p_rot = 1/freq_rot
     
     durations = np.linspace(0.05, 0.2, 22) * u.day
     model = BLS(lc_30min.time*u.day, combined_flux)
 #    model = BLS(lc_30min.time*u.day, BLS_flux)
     results = model.autopower(durations, frequency_factor=5.0)
     
     # Find the period and epoch of the peak
     rot_index = np.argmax(results.power)
     rot_period = results.period[rot_index]
     rot_t0 = results.transit_time[rot_index]
 
 ##    p_rot = 3.933 # AB Pic
 ##    p_rot = 3.6 # HIP 1113
 ##    p_rot = 4.36 # HIP 1993
 ##    p_rot = 3.405 # HIP 105388
 ##    p_rot = 3.9 # HIP 32235
 ##    p_rot = 2.67 # AO Men
 ##    p_rot = 0.57045 # 2 MASS J23261069-7323498
 ##    p_rot = 4.425 # 2 MASS J22428896-7142211
 #    p_rot = 2.95 # HIP 116748 AB