Exemplo n.º 1
0
def diffusion(X, y, w_opt, loss, maxite=2000, alpha=1e-1, **kwargs):

    if loss == 'logistic_regression':
        rho = kwargs.get('rho', 1e-1)
    elif loss == 'linear_regression':
        rho = 0
    else:
        raise NotImplementedError(
            'Task not supported. This example only supports' +
            ' linear_regression and logistic_regression')

    topology = bf.load_topology()
    self_weight, neighbor_weights = topology_util.GetRecvWeights(
        topology, bf.rank())

    w = torch.zeros(n, 1, dtype=torch.double, requires_grad=True)
    phi = w.clone()
    mse = []

    for i in range(maxite):
        # calculate loccal gradient via pytorch autograd
        loss_step(X,
                  y,
                  w,
                  tensor_name='neighbor.allreduce.local_variable',
                  loss=loss,
                  rho=rho)

        # diffusion
        with torch.no_grad():
            phi = w - alpha * w.grad.data
            w.data = bf.neighbor_allreduce(phi,
                                           self_weight=self_weight,
                                           src_weights=neighbor_weights,
                                           name='local variable')
            w.grad.data.zero_()

            # record convergence
            if bf.rank() == 0:
                mse.append(torch.norm(w.data - w_opt.data, p=2))

    return w, mse
Exemplo n.º 2
0
def exact_diffusion(X,
                    y,
                    w_opt,
                    loss,
                    maxite=2000,
                    alpha=1e-1,
                    use_Abar=True,
                    **kwargs):

    if loss == 'logistic_regression':
        rho = kwargs.get('rho', 1e-1)
    elif loss == 'linear_regression':
        rho = 0
    else:
        raise NotImplementedError(
            'Task not supported. This example only supports' +
            ' linear_regression and logistic_regression')

    topology = bf.load_topology()
    self_weight, neighbor_weights = topology_util.GetRecvWeights(
        topology, bf.rank())

    if bf.rank() == 0:
        print('self weights with A: {}\n'.format(self_weight))
        print('neighbor weights with A:\n')
        for k, v in neighbor_weights.items():
            print(k, v)

    w = torch.zeros(n, 1, dtype=torch.double, requires_grad=True)
    phi, psi, psi_prev = w.clone(), w.clone(), w.clone()
    mse = []

    # construct A_bar
    if use_Abar:
        self_weight = (self_weight + 1) / 2
        for k, v in neighbor_weights.items():
            neighbor_weights[k] = v / 2

    for i in range(maxite):
        # calculate loccal gradient via pytorch autograd
        loss_step(X,
                  y,
                  w,
                  tensor_name='neighbor.allreduce.local_variable',
                  loss=loss,
                  rho=rho)

        # exact diffusion
        psi = w - alpha * w.grad.data
        phi = psi + w.data - psi_prev
        w.data = bf.neighbor_allreduce(phi,
                                       self_weight,
                                       neighbor_weights,
                                       name='local variable')
        psi_prev = psi.clone()
        w.grad.data.zero_()

        # record convergence
        if bf.rank() == 0:
            mse.append(torch.norm(w.data - w_opt.data, p=2))

    return w, mse
Exemplo n.º 3
0
    def set_topology(self,
                     topology: Optional[networkx.DiGraph] = None,
                     is_weighted: bool = False) -> bool:
        """A function that sets the virtual topology MPI used.

        Args:
          Topo: A networkx.DiGraph object to decide the topology. If not provided
            a default exponential graph (base 2) structure is used.
          is_weighted: If set to true, the win_update and neighbor_allreduce will execute the
            weighted average instead, where the weights are the value used in topology matrix
            (including self weight). Note win_get/win_put/win_accumulate do not use this weight
            since win_update already uses these weights.

        Returns:
            A boolean value that whether topology is set correctly or not.

        Example:
            >>> import bluefog.torch as bf
            >>> from bluefog.common import topology_util
            >>> bf.init()
            >>> bf.set_topology(topology_util.RingGraph(bf.size()))
        """
        if topology is None:
            topology = topology_util.ExponentialGraph(size=self.size())
            if self.local_rank() == 0:
                logger.info(
                    "Topology is not specified. Default Exponential Two topology is used."
                )

        if not isinstance(topology, networkx.DiGraph):
            raise TypeError("topology must be a networkx.DiGraph obejct.")
        if topology_util.IsTopologyEquivalent(topology, self._topology):
            if self.local_rank() == 0:
                logger.debug(
                    "Topology to set is the same as old one. Skip the setting."
                )
            return True

        # We remove the self-rank for any cases because MPI graph_comm do not include it.
        destinations = sorted(
            [r for r in topology.successors(self.rank()) if r != self.rank()])
        sources = sorted([
            r for r in topology.predecessors(self.rank()) if r != self.rank()
        ])
        indegree = len(sources)
        outdegree = len(destinations)
        sources_type = ctypes.c_int * indegree
        destinations_type = ctypes.c_int * outdegree

        if not is_weighted:
            self._MPI_LIB_CTYPES.bluefog_set_topology.argtypes = ([
                ctypes.c_int,
                ctypes.POINTER(ctypes.c_int), ctypes.c_int,
                ctypes.POINTER(ctypes.c_int)
            ])
            ret = self._MPI_LIB_CTYPES.bluefog_set_topology(
                indegree, sources_type(*sources), outdegree,
                destinations_type(*destinations))
        else:
            # Here the source_weights is a vector containing weights from source, i.e.,
            # (in-)neighbors, converted from the neighbor_weights dictionary.
            self_weight, neighbor_weights = topology_util.GetRecvWeights(
                topology, self.rank())
            source_weights = [
                neighbor_weights[r] for r in sorted(neighbor_weights.keys())
            ]
            source_weights_type = ctypes.c_float * indegree
            self._MPI_LIB_CTYPES.bluefog_set_topology_with_weights.argtypes = (
                [
                    ctypes.c_int,
                    ctypes.POINTER(ctypes.c_int), ctypes.c_int,
                    ctypes.POINTER(ctypes.c_int), ctypes.c_float,
                    ctypes.POINTER(ctypes.c_float)
                ])
            ret = self._MPI_LIB_CTYPES.bluefog_set_topology_with_weights(
                indegree, sources_type(*sources), outdegree,
                destinations_type(*destinations), self_weight,
                source_weights_type(*source_weights))
        if ret != 1:
            if self.local_rank() == 0:
                logger.error(
                    "Cannot set topology correctly. Three common reasons caused this. \n"
                    "1. Has Bluefog been initialized? use bf.init(). \n"
                    "2. The win_create has been called. It is not allowed to change\n"
                    "   the topology after that. You can call win_free() to unregister\n"
                    "   all window object first, then set the topology. \n"
                    "3. Make sure all previous MPI ops are done. It is not allowed to \n"
                    "   change the topology while there is undone MPI ops.")
            return False
        self._topology = topology
        self._is_topo_weighted = is_weighted
        return True