Exemplo n.º 1
0
    def test_raise_exception_wordsize(self):
        """Raise an exception if an input value is not multiple of word size."""
        packer = Packer(2, 32)

        test_input = np.zeros([83], dtype=np.float32)
        test_input[0:-1:2] = 1
        test_input[0:-1:4] = 4

        with self.assertRaises(ValueError):
            packer.run(test_input)
Exemplo n.º 2
0
    def test_raise_exception_bitwidth(self):
        """Raise an exception if an input value is larger than bitwidth."""
        packer = Packer(2, 32)

        test_input = np.zeros([64], dtype=np.float32)
        test_input[0:-1:2] = 1
        test_input[0:-1:4] = 4

        with self.assertRaises(ValueError):
            packer.run(test_input)
Exemplo n.º 3
0
    def test_bw1_dividable_by_wordsize(self):
        """Test for when the input tensor size is able to divide by wordsize (1 bit version)."""
        packer = Packer(1, 32)

        test_input = np.zeros([32], dtype=np.float32)
        test_input[0:6] = [0, 1, 0, 1, 0, 1]

        test_output = packer.run(test_input)

        self.assertEqual(test_output[0], 42)
Exemplo n.º 4
0
    def test_bw1_not_dividable_by_wordsize(self):
        """Test for when the input tensor size is not able to divide by wordsize (1 bit version)."""
        packer = Packer(1, 37)

        test_input = np.zeros([37], dtype=np.float32)
        test_input[0::2] = 1

        test_output = packer.run(test_input)
        expected_output = [1431655765]

        np.testing.assert_array_equal(test_output[0], expected_output)
Exemplo n.º 5
0
    def test_bw2_dividable_by_wordsize(self):
        """Test for when the input tensor size is able to divide by wordsize (2 bit version)."""
        packer = Packer(2, 32)

        test_input = np.zeros([32], dtype=np.float32)
        test_input[0:6] = [0, 3, 0, 3, 0, 3]

        test_output = packer.run(test_input)
        expected_output = [42, 42]

        np.testing.assert_array_equal(test_output[0], expected_output)
Exemplo n.º 6
0
def pass_lookup(graph: Graph) -> None:
    """Lookup.

    Args:
        graph (Graph): The input graph. It will be modified in-place.

    """
    quantization_types = [
        'BinaryMeanScalingQuantizer', 'LinearMidTreadHalfQuantizer',
        'BinaryChannelWiseMeanScalingQuantizer'
    ]

    to_be_removed = []
    exec_list = [
        n for n in sort_graph(graph) if n.op_type in quantization_types
    ]
    placeholder = [n for n in sort_graph(graph) if n.op_type in 'Input']

    for m in exec_list:
        quantizer = m

        p1 = quantizer.input_nodes[0]
        if p1.op_type != 'Reshape':
            continue
        p2 = p1.input_nodes[0]
        if p2.op_type != 'Reshape':
            continue
        p3 = p2.input_nodes[0]
        if p3.op_type != 'Gather':
            continue
        p4 = p3.input_nodes[0]
        if p4.op_type != 'Gather':
            continue
        gather_params = p4.input_nodes[0]
        if gather_params.rank != 2 or gather_params.shape[0] != 256:
            continue

        params = gather_params.data
        data = {'data': params}
        qtz_data = quantizer.run(**data)['data']

        word_size = 32
        lu_bitwidth = quantizer.nbit
        packer = Packer(lu_bitwidth, word_size)

        lsb = np.zeros((256, ), np.uint32)
        msb = np.zeros((256, ), np.uint32)

        idx = 0
        for p in qtz_data:
            data = packer.run(p.astype(np.float32), p.shape).flatten()
            lsb[idx] = data[0]
            msb[idx] = data[1]

            idx += 1

        pe_lsb = Constant('pe_lsb_new',
                          QUANTIZED_PACKED_KERNEL(),
                          lsb,
                          dimension_format='TC',
                          packed=True,
                          actual_shape=[256, word_size])
        pe_msb = Constant('pe_msb_new',
                          QUANTIZED_PACKED_KERNEL(),
                          msb,
                          dimension_format='TC',
                          packed=True,
                          actual_shape=[256, word_size])

        n, h, w, c = quantizer.shape
        shape = [1, h, w, 2, word_size]
        pe = Lookup('Lookup',
                    shape,
                    QUANTIZED_PACKED(), {
                        'input': placeholder[0],
                        'lsb': pe_lsb,
                        'msb': pe_msb
                    },
                    dimension_format='ChHWBCl')

        get_nodes_in_branch(quantizer, placeholder[0], to_be_removed)

        reserved_placeholder_ops = [
            out_op for out_op in placeholder[0].output_op_list
            if out_op not in to_be_removed
        ]
        placeholder[0].remove_output('output')
        placeholder[0].add_outputs({'output': reserved_placeholder_ops})
        pe.add_outputs(quantizer.output_ops)

        output_op = quantizer.output_op_list[0]

        target_input_name = 'X'
        for input_name in output_op._input_names:
            if quantizer.equals(output_op._input_ops[input_name]):
                target_input_name = input_name
                break

        output_op.add_input(target_input_name, pe)

        graph.add_op(pe_lsb)
        graph.add_op(pe_msb)
        graph.add_op(pe)

    for op in to_be_removed:
        graph.remove_op(op)
Exemplo n.º 7
0
def pass_pack_weights(graph: Graph) -> None:
    """Given a Quantized convolution node C, it will pack the weights of C into 32 bit words.
       If the node Q that apply quantization to the weights of C quantizes, for example, into 1 bit values
       then one 32 bit word will contain 32 weights.

    Args:
        graph (Graph): The input graph. It will be modified in-place.

    """
    exec_list = [n for n in sort_graph(graph) if n.op_type == 'Conv']
    quantization_types = [
        'BinaryMeanScalingQuantizer', 'LinearMidTreadHalfQuantizer',
        'BinaryChannelWiseMeanScalingQuantizer'
    ]

    word_size = 32
    weight_bitwidth = 1
    packer = Packer(weight_bitwidth, word_size)
    to_be_removed = []
    b = 32

    for m in exec_list:
        conv_node = m

        # check if this is a quantized convolution
        if not conv_node.quantizer or not conv_node.a_quantizer:
            continue

        # Check if we support this kind of quantizer
        weight_quantizer = conv_node.quantizer
        if weight_quantizer.op_type not in quantization_types:
            continue

        # Quantize the weights
        weight_quantizer.run_forward()

        def pad_to_multiple_of_b(tensor, axis, b):
            shape = list(tensor.shape)
            pad = (((shape[axis] + b - 1) // b) * b) - shape[axis]
            shape[axis] = pad
            return np.zeros(shape) if pad else None

        padded_data = np.copy(weight_quantizer.data)

        for axis in [0, 3]:
            pad_tensor = pad_to_multiple_of_b(padded_data, axis, b)
            if pad_tensor is not None:
                padded_data = np.append(padded_data, pad_tensor, axis=axis)

        tca_output = np.copy(padded_data)
        oc, kh, kw, kd = padded_data.shape[:]
        padded_data = padded_data.flatten()
        tca_output = tca_output.flatten()

        out_index = 0
        for g in range(oc // b):
            for p in range(kd // b):
                for h in range(kh):
                    for w in range(kw):
                        for o in range(b):
                            for d in range(b):
                                idx = g * (kw * kh * kd * b) + p * b + h * (
                                    kw * kd) + w * kd + o * (kw * kh * kd) + d
                                tca_output[out_index] = padded_data[idx]
                                out_index += 1

        kn2row_output = np.zeros(oc * kh * kw * kd)
        out_index = 0
        for h in range(kh):
            for w in range(kw):
                for o in range(oc):
                    for i in range(kd):
                        idx = o * kh * kw * kd + h * kw * kd + w * kd + i
                        kn2row_output[out_index] = padded_data[idx]
                        out_index += 1

        op_data = weight_quantizer.binarizer(padded_data)
        data = packer.run(op_data.astype(np.float32),
                          weight_quantizer.dimension)

        tca_binarized_data = weight_quantizer.binarizer(tca_output)
        tca_packed_data = packer.run(tca_binarized_data.astype(np.float32),
                                     weight_quantizer.dimension)

        kn2row_binarized_data = weight_quantizer.binarizer(kn2row_output)
        kn2row_data = packer.run(kn2row_binarized_data.astype(np.float32),
                                 weight_quantizer.dimension)

        shape = [oc, kh, kw, kd]
        tca_shape = [oc // b, kd // b, kh, kw, b, b]
        kn2row_shape = [kh, kw, oc, kd]

        # Create the new constant with the quantized weights
        quantized_constant = Constant(
            weight_quantizer.name + '_new',
            PackedUint32(),
            data=np.vectorize(lambda k: (~k) & ((0x1 << 32) - 1))(data),
            dimension_format="OHWI",
            transposed_dimension_format="OhIhHWOlIl",
            packed=True,
            actual_shape=shape,
            transposed_shape=tca_shape,
            transposed_data=[(~k) & ((0x1 << 32) - 1)
                             for k in tca_packed_data.flatten()],
            kn2row_data=[k for k in kn2row_data.flatten()],
            kn2row_shape=kn2row_shape,
            kn2row_dimension_format="HWOI")

        # get nodes to be removed after being disconnected
        get_nodes_in_branch(weight_quantizer, None, to_be_removed)

        # Add the constant to the graph and connect the new constant
        graph.add_op(quantized_constant)
        quantized_constant.add_outputs(weight_quantizer.output_ops)
        for output_name, consumer_list in weight_quantizer.output_ops.items():
            for consumer_node in consumer_list:
                for input_name, input_node in consumer_node.input_ops.items():
                    if input_node == weight_quantizer:
                        consumer_node.add_input(input_name, quantized_constant)
                        break

    for op in to_be_removed:
        graph.remove_op(op)