Exemplo n.º 1
0
    def build(self):
        """Builds the nodes and edges for the network.
                """
        self.net = NetworkBuilder("biophysical")

        self.net.add_nodes(N=1,
                           pop_name='Pyrc',
                           potental='exc',
                           model_type='biophysical',
                           model_template='hoc:L5PCtemplate',
                           morphology=None)

        self._build_exc()
        self._build_inh()
        self._save_nets()

        self._make_rasters()

        #Final build step.
        build_env_bionet(
            base_dir='./',
            network_dir='./network',
            dt=self.params["dt"],
            tstop=self.params["time"]["stop"] * 1000.0,
            report_vars=['v'],
            dL=self.params["dL"],  #target length (um) of segments
            spikes_threshold=-10,
            spikes_inputs=[('exc_stim', 'exc_stim_spikes.h5'),
                           ('prox_inh_stim', 'prox_inh_stim_spikes.h5'),
                           ('dist_inh_stim', 'dist_inh_stim_spikes.h5')],
            components_dir='../biophys_components',
            compile_mechanisms=False)
Exemplo n.º 2
0
def test_add_edges_custom_params():
    # Uses connection map functionality to create edges with unique parameters
    net = NetworkBuilder('V1')
    net.add_nodes(N=10, arg_list=range(10), arg_ctype='e')
    net.add_nodes(N=5, arg_list=range(10, 15), arg_ctype='i')

    cm = net.add_edges(
        source={'arg_ctype': 'e'},
        target={'arg_ctype': 'i'},
        connection_rule=2
    )
    cm.add_properties('syn_weight', rule=0.5, dtypes=float)
    cm.add_properties(
        ['src_num', 'trg_num'],
        rule=lambda s, t: [s['node_id'], t['node_id']],
        dtypes=[int, int]
    )
    net.build()

    assert(net.nedges == 2*50)
    assert(net.edges_built is True)

    for e in net.edges():
        assert(e['syn_weight'] == 0.5)
        assert(e['src_num'] == e.source_node_id)
        assert(e['trg_num'] == e.target_node_id)
Exemplo n.º 3
0
def test_no_name():
    # Fail if network name is invalid
    with pytest.raises(ValueError):
        NetworkBuilder(name='')

    with pytest.raises(ValueError):
        NetworkBuilder(name=None)
Exemplo n.º 4
0
    def _build_exc(self):
        """Builds the excitatory input cells and their synapses.
                """

        # External excitatory inputs
        self.exc_stim = NetworkBuilder('exc_stim')

        #DataFrame of all segments on the cell.
        segs = pd.read_csv(self.params["cell"]["segments_file"])

        dends = segs[(segs["Type"] == "dend") & (segs["Distance"] >= 50)]
        apics = segs[(segs["Type"] == "apic")]

        np.random.seed(self.seed + 1)
        apic_start, self.dend_groups = self._build_exc_nodes(
            dends, "dend", self.n_dend_exc)

        np.random.seed(self.seed + 2)
        _, self.apic_groups = self._build_exc_nodes(apics,
                                                    "apic",
                                                    self.n_apic_exc,
                                                    start=apic_start)

        np.random.seed(self.seed + 3)
        self._build_exc_edges(self.dend_groups)

        np.random.seed(self.seed + 4)
        self._build_exc_edges(self.apic_groups)
Exemplo n.º 5
0
def test_single_node():
    net = NetworkBuilder('NET1')
    net.add_nodes(prop1='prop1', prop2='prop2', param1=['param1'])
    nodes = list(net.nodes())
    assert (len(nodes) == 1)
    assert (nodes[0]['param1'] == 'param1')
    assert (nodes[0]['prop1'] == 'prop1')
    assert (nodes[0]['prop2'] == 'prop2')
Exemplo n.º 6
0
def test_node_sets():
    net = NetworkBuilder('NET1')
    net.add_nodes(N=100, prop_n='prop1', pool1='p1', sp='sp', param1=range(100))
    net.add_nodes(N=100, prop_n='prop2', pool2='p2', sp='sp', param1=range(100))
    net.add_nodes(N=100, prop_n='prop3', pool3='p3', sp='sp', param1=range(100))
    node_pool_1 = net.nodes(prop_n='prop1')
    assert(len(node_pool_1) == 100)
    assert(node_pool_1.filter_str == "prop_n=='prop1'")
    for n in node_pool_1:
        assert('pool1' in n and n['prop_n'] == 'prop1')

    node_pool_2 = net.nodes(sp='sp')
    assert(node_pool_2.filter_str == "sp=='sp'")
    assert(len(node_pool_2) == 300)
    for n in node_pool_2:
        assert(n['sp'] == 'sp')

    node_pool_3 = net.nodes(param1=10)
    assert(len(node_pool_3) == 3)
    assert(node_pool_3.filter_str == "param1=='10'")
    nodes = list(node_pool_3)
    assert(nodes[0]['node_id'] == 10)
    assert(nodes[1]['node_id'] == 110)
    assert(nodes[2]['node_id'] == 210)
    assert(nodes[0]['node_type_id'] != nodes[1]['node_type_id'] != nodes[2]['node_type_id'])
Exemplo n.º 7
0
def test_basic():
    net = NetworkBuilder('CA1')
    assert(net.name == 'CA1')
    assert(net.nnodes == 0)
    assert(net.nedges == 0)
    assert(net.nodes_built is False)
    assert(net.edges_built is False)

    assert(len(net.nodes()) == 0)
    assert(len(net.edges()) == 0)
    assert(net.nodes_built is True)
    assert(net.edges_built is True)
Exemplo n.º 8
0
def test_node_set():
    net = NetworkBuilder('NET1')
    net.add_nodes(N=100, prop1='prop1', param1=range(100))
    node_pool = net.nodes()
    assert (node_pool.filter_str == '*')

    nodes = list(node_pool)
    assert (len(nodes) == 100)
    assert (nodes[0]['prop1'] == 'prop1')
    assert (nodes[0]['param1'] == 0)
    assert (nodes[99]['prop1'] == 'prop1')
    assert (nodes[99]['param1'] == 99)
    assert (nodes[0]['node_type_id'] == nodes[99]['node_type_id'])
    assert (nodes[0]['node_id'] != nodes[99]['node_id'])
Exemplo n.º 9
0
def test_create_network():
    net = NetworkBuilder('NET1')
    assert (net.name == 'NET1')
    assert (net.nnodes == 0)
    assert (net.nedges == 0)
    assert (net.nodes_built is False)
    assert (net.edges_built is False)
Exemplo n.º 10
0
def test_add_node_ids_mixed():
    net = NetworkBuilder('V1')
    net.add_nodes(N=3, node_id=[0, 2, 4], vals=[0, 2, 4])
    net.add_nodes(N=3, vals=[1, 1, 1])
    net.add_nodes(nodes_ids=[6], vals=[6])
    unique_ids = set()
    for n in net.nodes():
        unique_ids.add(n.node_id)
        if n.node_id % 2 == 0:
            assert(n['vals'] == n.node_id)
        else:
            assert(n['vals'] == 1)
    assert(len(unique_ids) == 7)
Exemplo n.º 11
0
    def build(self):
        """Builds the nodes and edges for the network.
                """
        np.random.seed(self.seed)

        self._set_prefixed_directory("mechanisms")
        self._set_prefixed_directory("templates")

        self.net = NetworkBuilder("biophysical")

        self.net.add_nodes(
            N=1,
            pop_name='Pyrc',
            potental='exc',
            model_type='biophysical',
            dynamics_params=self.params["cell"]["dynamic_params"],
            model_template=self.params["cell"]["model_template"],
            model_processing=self.params["cell"]["model_processing"],
            morphology=self.params["cell"]["morphology"])

        self._build_exc()
        self._build_inh()
        self._save_nets()

        self._make_rasters()

        #Final build step.
        build_env_bionet(
            base_dir='./',
            network_dir='./network',
            dt=self.params["dt"],
            tstop=self.params["time"]["stop"] * 1000.0,
            report_vars=self.params["record_cellvars"]["vars"],
            dL=self.params["dL"],  #target length (um) of segments
            spikes_threshold=-10,
            file_current_clamp=self.file_current_clamp,
            spikes_inputs=[('exc_stim', 'exc_stim_spikes.h5'),
                           ('prox_inh_stim', 'prox_inh_stim_spikes.h5'),
                           ('dist_inh_stim', 'dist_inh_stim_spikes.h5')],
            components_dir='../biophys_components',
            compile_mechanisms=True)

        self._modify_jsons()
Exemplo n.º 12
0
def test_multi_search():
    net = NetworkBuilder('NET1')
    net.add_nodes(N=10, prop_n='prop1', sp='sp1', param1=range(0, 10))
    net.add_nodes(N=10, prop_n='prop1', sp='sp2', param1=range(5, 15))
    net.add_nodes(N=20, prop_n='prop2', sp='sp2', param1=range(20))
    node_pool = net.nodes(prop_n='prop1', param1=5)
    assert (len(node_pool) == 2)
    nodes = list(node_pool)
    assert (nodes[0]['node_id'] == 5)
    assert (nodes[1]['node_id'] == 10)
Exemplo n.º 13
0
def test_duplicate_node_ids():
    # Check if the same node_id is being used twice
    net = NetworkBuilder('V1')
    net.add_nodes(N=1, node_id=[100])

    with pytest.raises(ValueError):
        net.add_nodes(N=1, node_id=[100])
Exemplo n.º 14
0
def test_failed_search():
    net = NetworkBuilder('NET1')
    net.add_nodes(N=100, p1='p1', q1=range(100))
    node_pool = net.nodes(p1='p2')
    assert (len(node_pool) == 0)

    node_pool = net.nodes(q2=10)
    assert (len(node_pool) == 0)
Exemplo n.º 15
0
def test_add_node_ids():
    # Special case if parameters node_id and node_type_id are explicitly defined by the user
    net = NetworkBuilder('V1')
    net.add_nodes(N=3, node_id=[100, 200, 300], node_type_id=101, name=['one', 'two', 'three'])
    net.build()
    node_one = list(net.nodes(name='one'))[0]
    assert(node_one['name'] == 'one')
    assert(node_one['node_id'] == 100)
    assert(node_one.node_id == 100)
    assert(node_one['node_type_id'] == 101)

    node_three = list(net.nodes(name='three'))[0]
    assert(node_three['name'] == 'three')
    assert(node_three['node_id'] == 300)
    assert (node_one.node_id == 100)
    assert(node_three['node_type_id'] == 101)
Exemplo n.º 16
0
def build_source_network(target_net):
    input_network_model = {
        'external': {
            'N': 1,
            'ei': 'e',
            'pop_name': 'input_network',
            'model_type': 'virtual'
        }
    }

    inputNetwork = NetworkBuilder("external")
    inputNetwork.add_nodes(**input_network_model['external'])

    inputNetwork.add_edges(target=target_net.nodes(pop_name='LIF_exc'),
                           connection_rule=random_connections,
                           connection_params={'p': 0.1},
                           syn_weight=400,
                           delay=D,
                           dynamics_params='ExcToExc.json',
                           model_template='static_synapse')

    inputNetwork.add_edges(target=target_net.nodes(pop_name='LIF_inh'),
                           connection_rule=random_connections,
                           connection_params={'p': 0.1},
                           syn_weight=400,
                           delay=D,
                           dynamics_params='ExcToExc.json',
                           model_template='static_synapse')

    inputNetwork.build()
    net.save(output_dir='network')
    #inputNetwork.save_nodes(nodes_file_name='one_input_node.h5', node_types_file_name='one_input_node_type.csv',
    #                        output_dir='lif_network')
    #inputNetwork.save_edges(edges_file_name='one_input_edges.h5', edge_types_file_name='one_input_edge_type.csv',
    #                        output_dir='lif_network')
    return inputNetwork
Exemplo n.º 17
0
    def _build_exc(self):
        """Builds the excitatory input cells and their synapses.
                """

        np.random.seed(1000)
        # External excitatory inputs
        self.exc_stim = NetworkBuilder('exc_stim')

        #DataFrame of all segments on the cell.
        segs = pd.read_csv("Segments.csv")

        dends = segs[(segs["Type"] == "dend") & (segs["Distance"] >= 50)]
        apics = segs[(segs["Type"] == "apic")]

        apic_start, self.dend_groups = self._build_exc_nodes(
            dends, "dend", self.n_dend_exc)

        _, self.apic_groups = self._build_exc_nodes(apics,
                                                    "apic",
                                                    self.n_apic_exc,
                                                    start=apic_start)

        self._build_exc_edges(self.dend_groups)
        self._build_exc_edges(self.apic_groups)
Exemplo n.º 18
0
def test_build_nodes1():
    net = NetworkBuilder('NET1')
    net.add_nodes(N=3, node_id=[100, 200, 300], node_type_id=101, name=['one', 'two', 'three'])
    node_one = list(net.nodes(name='one'))[0]
    assert(node_one['name'] == 'one')
    assert(node_one['node_id'] == 100)
    assert(node_one['node_type_id'] == 101)

    node_three = list(net.nodes(name='three'))[0]
    assert(node_three['name'] == 'three')
    assert(node_three['node_id'] == 300)
    assert(node_three['node_type_id'] == 101)
Exemplo n.º 19
0
def test_add_nodes_tuples():
    # Should be able to store tuples of values in single parameters for a given node
    net = NetworkBuilder('V1')
    net.add_nodes(N=10,
                  arg_list=range(10),
                  arg_tuples=[(r, r+1) for r in range(10)],
                  arg_const=('a', 'b'))
    net.build()

    assert(net.nodes_built is True)
    assert(net.nnodes == 10)
    for node in net.nodes():
        assert(len(node['arg_tuples']) == 2)
        assert(node['arg_tuples'][0] == node['arg_list'] and node['arg_tuples'][1] == node['arg_list']+1)
        assert(len(node['arg_const']) == 2)
        assert(node['arg_const'][0] == 'a' and node['arg_const'][1] == 'b')
Exemplo n.º 20
0
from bmtk.builder import NetworkBuilder

net = NetworkBuilder('brunel')
net.add_nodes(pop_name='excitatory',
              ei='e',
              model_type='population',
              model_template='dipde:Internal',
              dynamics_params='exc_model.json')

net.add_nodes(pop_name='inhibitory',
              ei='i',
              model_type='population',
              model_template='dipde:Internal',
              dynamics_params='inh_model.json')

net.add_edges(source={'ei': 'e'}, target={'ei': 'i'},
              syn_weight=0.005,
              nsyns=20,
              delay=0.002,
              dynamics_params='ExcToInh.json')

net.add_edges(source={'ei': 'i'}, target={'ei': 'e'},
              syn_weight=-0.002,
              nsyns=10,
              delay=0.002,
              dynamics_params='InhToExc.json')

net.build()
net.save_nodes(nodes_file_name='brunel_nodes.h5', node_types_file_name='brunel_node_types.csv', output_dir='network')
net.save_edges(edges_file_name='brunel_edges.h5', edge_types_file_name='brunel_edge_types.csv', output_dir='network')
Exemplo n.º 21
0
from bmtk.builder import NetworkBuilder
from bmtk.utils.reports.spike_trains import PoissonSpikeGenerator
from bmtk.utils.sim_setup import build_env_bionet
import numpy as np
import sys
import synapses

synapses.load()
syn = synapses.syn_params_dicts()

# Initialize our network

net = NetworkBuilder("biophysical")

num_inh = [1]

num_exc = [1]

##################################################################################
###################################BIOPHY#########################################

net.add_nodes(N=5,
              pop_name='PyrA',
              mem_potential='e',
              model_type='biophysical',
              model_template='hoc:feng_typeA',
              morphology=None)

net.add_nodes(N=3,
              pop_name='PyrC',
              mem_potential='e',
Exemplo n.º 22
0
# if __name__ == '__main__':
#     if __file__ != sys.argv[-1]:
#         inp = sys.argv[-1]
#     else:
#         raise Exception("no work" + str(sys.argv[-1]))

N = 1#int(inp)

np.random.seed(2129)
#np.random.seed(42)

# synapses.load()
# syn = synapses.syn_params_dicts()

net = NetworkBuilder("biophysical")

net.add_nodes(N=N, pop_name='Pyrc',
    potental='exc',
    model_type='biophysical',
    model_template='hoc:L5PCtemplate',
    morphology = None)

# exc_stim = NetworkBuilder('exc_stim')
# exc_stim.add_nodes(N=1,
#                 pop_name='exc_stim',
#                 potential='exc',
#                 model_type='virtual')
                

# # Create connections between Exc --> Pyr cells
Exemplo n.º 23
0
from bmtk.builder import NetworkBuilder
import numpy as np
import sys
import synapses

synapses.load()
syn = synapses.syn_params_dicts()

# Initialize our network

net = NetworkBuilder("biophysical")

#num_inh = [int(lognormal(43, 13)) for i in range(N)]
num_inh = [1]

#num_exc = [int(lognormal(25, 10)) for i in range(N)]
num_exc = [1]

##################################################################################
###################################Pyr Type C#####################################

net.add_nodes(N=1,
              pop_name='PyrC',
              mem_potential='e',
              model_type='biophysical',
              model_template='hoc:feng_typeC',
              morphology=None)

##################################################################################
###################################External Networks##############################
Exemplo n.º 24
0
from bmtk.builder import NetworkBuilder
import numpy as np
from bmtk.builder.auxi.node_params import positions_cuboid, positions_list, xiter_random
import synapses
import pdb

np.random.seed(123412)

# Initialize our network
net = NetworkBuilder("SPWR_biophysical")

# Create the possible x,y,z coordinates
xside_length = 1400;
yside_length = 1400;
height = 400;
min_dist = 20;  # was x = 700 height = 200
x_grid = np.arange(0, xside_length + min_dist, min_dist)
y_grid = np.arange(0, yside_length + min_dist, min_dist)
z_grid = np.arange(0, height + min_dist, min_dist)
xx, yy, zz = np.meshgrid(x_grid, y_grid, z_grid)
pos_list = np.vstack([xx.ravel(), yy.ravel(), zz.ravel()]).T
# 10.5 minutes with add properties
# 3.5 minutes without
# 4 minutes my hacking
# 7 minutes with just delay
# 6 minutes just delay but no calculation
# Number of cells in each population
numPN_A = 2057  # 8229
numPN_C = 2057  # 8229
numBask = 927  # 3708
numAAC = 101  # 406
Exemplo n.º 25
0
from bmtk.builder import NetworkBuilder
import numpy as np
from bmtk.builder.auxi.node_params import positions_cuboid, positions_list
import math
import random
np.random.seed(91)

# Initialize our network
netff = NetworkBuilder("ff_model")

# Create the possible x,y,z coordinates
xside_length = 600
yside_length = 600
height = 600
min_dist = 25
ILxside_length = 800
ILyside_length = 800
IL_height13 = 1200
IL_height56 = 900
x_grid = np.arange(0, xside_length + min_dist, min_dist)
y_grid = np.arange(0, yside_length + min_dist, min_dist)

ILx_grid = np.arange(-200, ILxside_length + min_dist, min_dist)
ILy_grid = np.arange(-200, ILyside_length + min_dist, min_dist)
z_grid = np.arange(0, height + min_dist, min_dist)
IL13_z_grid = np.arange(600 + 30 + 232 + 236 + 180,
                        600 + 30 + 232 + 236 + 180 + 101 + min_dist, min_dist)
IL56_z_grid = np.arange(600 + 30 + 232, 600 + 30 + 232 + 264 + min_dist,
                        min_dist)
xxBL, yyBL, zzBL = np.meshgrid(x_grid, y_grid, z_grid)
xxIL13, yyIL13, zzIL13 = np.meshgrid(x_grid, y_grid, IL13_z_grid)
Exemplo n.º 26
0
    def _build_inh(self):
        """Creates inhibitory input nodes and their connections onto the biophysical cell
                """

        #####################Perisomatic Inhibition##############################
        self.prox_inh_stim = NetworkBuilder('prox_inh_stim')

        #Nodes that connect to soma.
        self.prox_inh_stim.add_nodes(N=self.n_soma_inh,
                                     pop_name='on_soma',
                                     potential='exc',
                                     model_type='virtual')

        #Nodes that connect to proximal dendrites.
        self.prox_inh_stim.add_nodes(N=self.n_prox_dend_inh,
                                     pop_name='on_dend',
                                     potential='exc',
                                     model_type='virtual')

        div_params = self.params["divergence"]["peri_inh"]

        #On soma.
        np.random.seed(self.seed + 5)
        self.net.add_edges(
            source=self.prox_inh_stim.nodes(pop_name='on_soma'),
            target=self.net.nodes(),
            connection_rule=SimulationBuilder._norm_connect,
            connection_params={
                "m": div_params["m"],
                "s": div_params["s"],
                "low": div_params["min"],
                "high": div_params["max"]
            },
            syn_weight=1,
            delay=0.1,
            dynamics_params='PV2PN.json',
            model_template=self.syn['PV2PN.json']['level_of_detail'],
            distance_range=[-2000, 2000.0],
            target_sections=['somatic'])

        #On dendrites within 50 um
        np.random.seed(self.seed + 6)
        self.net.add_edges(
            source=self.prox_inh_stim.nodes(pop_name='on_dend'),
            target=self.net.nodes(),
            connection_rule=SimulationBuilder._norm_connect,
            connection_params={
                "m": div_params["m"],
                "s": div_params["s"],
                "low": div_params["min"],
                "high": div_params["max"]
            },
            syn_weight=1,
            delay=0.1,
            dynamics_params='PV2PN.json',
            model_template=self.syn['PV2PN.json']['level_of_detail'],
            distance_range=[0, 50.0],
            target_sections=['dend'])
        #######################################################################################

        #############################Dendritic Inhibition######################################
        self.dist_inh_stim = NetworkBuilder('dist_inh_stim')

        self.dist_inh_stim.add_nodes(N=self.n_dend_inh,
                                     pop_name='dend',
                                     potential='exc',
                                     model_type='virtual')

        self.dist_inh_stim.add_nodes(N=self.n_apic_inh,
                                     pop_name='apic',
                                     potential='exc',
                                     model_type='virtual')

        div_params = self.params["divergence"]["basal_inh"]

        #Basal edges.
        np.random.seed(self.seed + 7)
        self.net.add_edges(
            source=self.dist_inh_stim.nodes(pop_name="dend"),
            target=self.net.nodes(),
            connection_rule=SimulationBuilder._norm_connect,
            connection_params={
                "m": div_params["m"],
                "s": div_params["s"],
                "low": div_params["min"],
                "high": div_params["max"]
            },
            syn_weight=1,
            delay=0.1,
            dynamics_params='SOM2PN.json',
            model_template=self.syn['SOM2PN.json']['level_of_detail'],
            distance_range=[50, 2000.0],
            target_sections=['dend'])

        div_params = self.params["divergence"]["apic_inh"]

        #Apic edges.
        np.random.seed(self.seed + 8)
        self.net.add_edges(
            source=self.dist_inh_stim.nodes(pop_name="apic"),
            target=self.net.nodes(),
            connection_rule=SimulationBuilder._norm_connect,
            connection_params={
                "m": div_params["m"],
                "s": div_params["s"],
                "low": div_params["min"],
                "high": div_params["max"]
            },
            syn_weight=1,
            delay=0.1,
            dynamics_params='SOM2PN.json',
            model_template=self.syn['SOM2PN.json']['level_of_detail'],
            distance_range=[50, 2000.0],
            target_sections=['apic'])
Exemplo n.º 27
0
#find 0.2 mv

synapses.load()
syn = synapses.syn_params_dicts()

if __name__ == '__main__':
    if __file__ != sys.argv[-1]:
        inp = sys.argv[-1]
    else:
        raise Exception("no work" + str(sys.argv[-1]))

N = int(inp)

# Initialize our network

net = NetworkBuilder("biophysical")


def lognormal(m, s):
    mean = np.log(m) - 0.5 * np.log((s / m)**2 + 1)
    std = np.sqrt(np.log((s / m)**2 + 1))
    return max(np.random.lognormal(mean, std, 1), 0)


num_inh = [int(lognormal(43, 13)) for i in range(N)]
print(num_inh)
inh_bounds = []
sum = 0
for num in num_inh:
    sum += num
    inh_bounds.append(sum)
Exemplo n.º 28
0
    if __file__ != sys.argv[-1]:
        inp = sys.argv[-1]
    else:
        raise Exception("no work" + str(sys.argv[-1]))

N = int(inp)

# exc_fr = float(frs[0])
# inh_fr = float(frs[1])
# print(exc_fr, inh_fr)

#N = 10

# Initialize our network

net = NetworkBuilder("biophysical")

def lognormal(m, s):
        mean = np.log(m) - 0.5 * np.log((s/m)**2+1)
        std = np.sqrt(np.log((s/m)**2 + 1))
        return max(np.random.lognormal(mean, std, 1), 0)

# Dend Excitatory: 8998.0
# Apic Excitatory: 12380.0
# Soma Inhibitory: 2285.0

# num_inh = [231, 405, 61]#[int(lognormal(56, 7.5)) for i in range(N)]
# print(num_inh)
# inh_bounds = []
# sum = 0
# for num in num_inh:
Exemplo n.º 29
0
        'model_template': 'nml:nml/Cell_472363762.cell.nml' if use_nml else 'ctdb:Biophys1.hoc',
        'dynamics_params': 'NONE' if use_nml else 'json/472363762_fit.json'
    },
    {
        'model_name': 'Rorb', 'ei': 'e', 'morphology': 'Rorb_325404214_m',
        'model_template': 'nml:nml/Cell_473863510.cell.nml' if use_nml else 'ctdb:Biophys1.hoc',
        'dynamics_params': 'NONE' if use_nml else 'json/473863510_fit.json'
    },
    {
        'model_name': 'Nr5a1', 'ei': 'e', 'morphology': 'Nr5a1_471087815_m',
        'model_template': 'nml:nml/Cell_473863035.cell.nml' if use_nml else 'ctdb:Biophys1.hoc',
        'dynamics_params': 'NONE' if use_nml else 'json/473863035_fit.json'
    }
]

cortex = NetworkBuilder("cortex")
for i, model_props in enumerate(cell_models):
    cortex.add_nodes(N=3,
                     x=[i*30.0 + j for j in range(3)],  y=[0.0]*3, z=[0.0]*3,  # space cells every 10nm along x axs
                     model_type='biophysical',
                     model_processing='aibs_perisomatic',
                     **model_props)

cortex.build()
cortex.save_nodes(output_dir='network')

morphologies = {p['model_name']: SWCReader(os.path.join('../shared_components/morphologies', p['morphology']))
                for p in cell_models}


def build_edges(src, trg, sections=['basal', 'apical'], dist_range=[50.0, 150.0]):
Exemplo n.º 30
0
class SimulationBuilder:
    """Class used to build our BMTK simulation.

        Attributes
        ----------
        params : dict
                contains parameters for the network
        seed : int
                base random seed for the simulation
        syn : dict
                contains synaptic templates

        n_dend_exc : int
                number of excitatory input cells on the basal dendrites
        n_apic_exc : int
                number of excitatory input cells on the apical dendrites

        n_dend_inh : int
                number of inhibitory (SOM+) input cells on the basal dendrites 
                more than 50 um from the soma.
        n_apic_inh : int
                number of inhibitory (SOM+) input cells on the apical dendrites
        n_prox_dend_inh : int
                number of inhibitory (PV+) input cells on the basal dendrites
                less than 50 um from the soma
        n_soma_inh : int
                number of inhibitory (PV+) input cells on the soma

        clust_per_group : int
                number of clusters per functional group

        net : NetworkBuilder
                the BMTK network for the biophysical cell
        exc_stim : NetworkBuilder
                the BMTK network for excitatory inputs
        prox_inh_stim : NetworkBuilder
                the BMTK network for perisomatic inhibition
        dist_inh_stim : NetworkBuilder
                the BMTK network for dendritic inhibition

        dend_groups : list
                all excitatory functional groups on the basal dendrites
        apic_groups : list
                all excitatory functional groups on the apical dendrites

        Methods
        -------
        build()
                builds the network
        save_groups()
                saves the functional groups to a csv

        _set_prefixed_directory(base_dir_name : str)
                sets up the correct biophy_components structure based on the cell prefix in params for the given directory base

        _build_exc()
                creates excitatory input nodes and edges
        _build_exc_nodes(segs : pandas.DataFrame, base_name : str, n_cells : int, start=0 : int)
                builds excitatory nodes
        _build_exc_edges(group_list : list)
                builds excitatory edges

        _save_nets()
                builds and saves the BMTK NetworkBuilders

        _build_inh()
                creates inhibitory input nodes and edges
        
        _make_rasters()
                creates the inhibitory and excitatory input rasters
        _gen_exc_spikes(fname : str)
                generates and saves the excitatory spike rasters
        _gen_inh_spikes(n_cells : int, mean_fr : float, std_fr : float, key : str, fname : str)
                creates inhibitory spike rasters, using a noise trace based on averaging excitation and shifting it
        _modify_jsons()
                modifies the various json files however is needed after they are built
        _modify_sim_config()
                modifies the simulation_config.json however is needed
        _update_cellvar_record_locs(sim_config : dict)
                modifies the location of cellvar recordings in the given JSON simulation_config

        Static Methods
        --------------
        _get_directory_prefix(directory : str)
                reads the prefix.txt fil in directory and returns the contents
        _connector_func(sources : list, targets : list, cells : list)
                sets the number of synapses from the given cells
        _set_location(source : dict, target : dict, cells : list, start_id : int)
                sets the location of the given edge

        _norm_connect(source : dict, target : dict, m : float, s : float, low : int, high : int)
                used to normally distribute connection counts

        _gen_group_spikes(writer : SonataWriter, group : FunctionalGroup, seconds : float, start_time : float, dist : func)
                creates and saves a functional group's spike raster
        _norm_rvs(mean : float, std : float)
                generates a random float from a normal distribution with a near zero minimum
        """
    def __init__(self, params_file, seed=123):
        """Initializes the simulation builder, 
                setting up attributes but not actually building the BMTK network.

                Parameters
                ----------
                params_file : str
                    path to the JSON file with network parameters
                seed : int
                    base random seed for the simulation
                """
        #Loads the JSON file with information about the network.
        with open(params_file) as f:
            self.params = json.load(f)

        self.seed = seed

        #Loads synapse templates.
        synapses.load()
        self.syn = synapses.syn_params_dicts()

        avg_exc_div = np.mean(list(self.params["divergence"]["exc"].values()))

        self.n_dend_exc = int(
            (self.params["lengths"]["basal_dist"] *
             self.params["syn_density"]["exc"]) / avg_exc_div)
        self.n_apic_exc = int(
            (self.params["lengths"]["apic"] *
             self.params["syn_density"]["exc"]) / avg_exc_div)

        self.n_dend_inh = int((self.params["lengths"]["basal_dist"] *
                               self.params["syn_density"]["inh"]) /
                              self.params["divergence"]["basal_inh"]["m"])
        self.n_apic_inh = int((self.params["lengths"]["apic"] *
                               self.params["syn_density"]["inh"]) /
                              self.params["divergence"]["apic_inh"]["m"])

        self.n_prox_dend_inh = int((self.params["lengths"]["basal_prox"] *
                                    self.params["syn_density"]["inh"]) /
                                   self.params["divergence"]["peri_inh"]["m"])
        self.n_soma_inh = int(self.params["n_soma_syns"] /
                              self.params["divergence"]["peri_inh"]["m"])

        self.clust_per_group = int(
            (self.params["groups"]["cells_per_group"] * avg_exc_div) //
            (self.params["syn_density"]["exc"] * 10))
        if self.params["file_current_clamp"]["input_file"] == "None":
            self.file_current_clamp = None
        else:
            self.file_current_clamp = self.params["file_current_clamp"]

    def build(self):
        """Builds the nodes and edges for the network.
                """
        np.random.seed(self.seed)

        self._set_prefixed_directory("mechanisms")
        self._set_prefixed_directory("templates")

        self.net = NetworkBuilder("biophysical")

        self.net.add_nodes(
            N=1,
            pop_name='Pyrc',
            potental='exc',
            model_type='biophysical',
            dynamics_params=self.params["cell"]["dynamic_params"],
            model_template=self.params["cell"]["model_template"],
            model_processing=self.params["cell"]["model_processing"],
            morphology=self.params["cell"]["morphology"])

        self._build_exc()
        self._build_inh()
        self._save_nets()

        self._make_rasters()

        #Final build step.
        build_env_bionet(
            base_dir='./',
            network_dir='./network',
            dt=self.params["dt"],
            tstop=self.params["time"]["stop"] * 1000.0,
            report_vars=self.params["record_cellvars"]["vars"],
            dL=self.params["dL"],  #target length (um) of segments
            spikes_threshold=-10,
            file_current_clamp=self.file_current_clamp,
            spikes_inputs=[('exc_stim', 'exc_stim_spikes.h5'),
                           ('prox_inh_stim', 'prox_inh_stim_spikes.h5'),
                           ('dist_inh_stim', 'dist_inh_stim_spikes.h5')],
            components_dir='../biophys_components',
            compile_mechanisms=True)

        self._modify_jsons()

    def save_groups(self):
        """saves the apic and dend groups into a csv.
                one row for each node containgin the id of the functional group it is in.
                """
        all_groups = self.dend_groups + self.apic_groups
        node_ids = []
        func_groups = []

        for func_id, group in enumerate(all_groups):
            for i in range(group.start_id, group.start_id + group.n_cells):
                node_ids.append(i)
                func_groups.append(func_id)

        df = pd.DataFrame()
        df["Node ID"] = node_ids
        df["Functional Group"] = func_groups
        df.to_csv("FunctionalGroups.csv", index=False)

    def _set_prefixed_directory(self, base_dir_name):
        """Fixes the biophy_components directory. There should be only one directory
                named <base_dir_name> and it should be the one with the prefix.txt file in it
                that has the same prefix as params.

                Parameters
                ----------
                base_dir_name : str
                        base name of the set of directories to be fixed
                """
        #import pdb; pdb.set_trace()
        components_path = "../biophys_components/"
        biophys_subdirs = [
            f.name for f in os.scandir(components_path) if f.is_dir()
        ]

        for dir_name in biophys_subdirs:
            if base_dir_name == dir_name:
                prefix = SimulationBuilder._get_directory_prefix(
                    components_path + dir_name)
                if prefix == self.params["cell"]["prefix"]:
                    return
                else:
                    os.rename(components_path + base_dir_name,
                              components_path + prefix + base_dir_name)

        for dir_name in biophys_subdirs:
            if base_dir_name in dir_name and self.params["cell"][
                    "prefix"] in dir_name:
                os.rename(components_path + dir_name,
                          components_path + base_dir_name)

    def _get_directory_prefix(directory):
        """Returns the contents of the prefix.txt file in the given directory.

                Parameters
                ----------
                directory : str
                        directory to look in

                Returns
                -------
                str
                        contents of prefix.txt
                """
        with open(directory + "/prefix.txt", 'r') as f:
            return f.read()

    def _build_exc(self):
        """Builds the excitatory input cells and their synapses.
                """

        # External excitatory inputs
        self.exc_stim = NetworkBuilder('exc_stim')

        #DataFrame of all segments on the cell.
        segs = pd.read_csv(self.params["cell"]["segments_file"])

        dends = segs[(segs["Type"] == "dend") & (segs["Distance"] >= 50)]
        apics = segs[(segs["Type"] == "apic")]

        np.random.seed(self.seed + 1)
        apic_start, self.dend_groups = self._build_exc_nodes(
            dends, "dend", self.n_dend_exc)

        np.random.seed(self.seed + 2)
        _, self.apic_groups = self._build_exc_nodes(apics,
                                                    "apic",
                                                    self.n_apic_exc,
                                                    start=apic_start)

        np.random.seed(self.seed + 3)
        self._build_exc_edges(self.dend_groups)

        np.random.seed(self.seed + 4)
        self._build_exc_edges(self.apic_groups)

    #Sets the number of synapses for each input cell.
    def _connector_func(sources, target, cells):
        """Used to set the number of synapses from each excitatory input
                cell in a functional group. Use with "all_to_one" iterator.

                Parameters
                ----------
                sources : list
                        presynaptic nodes (represented as dicts)
                target : dict
                        postsynaptic node
                cells : list
                        list of Cells in the FunctionalGroup

                Returns
                -------
                list
                        list of synapses for each pairing
                """
        return [cell.n_syns for cell in cells]

    #Sets the location of synapses based on the given cell list.
    def _set_location(source, target, cells, start_id):
        """Sets the location of the given synapse.

                Parameters
                ----------
                source : dict
                    source node information
                target : dict
                    target node information
                cells : list
                    Cells in the functional group
                start_id : int
                    start_id for the functional groups the cells come from

                Returns
                -------
                int
                    BMTK section id
                float
                    distance along the section
                """
        #Gets the proper index within the cell list.
        index = source.node_id - start_id

        seg = cells[index].get_seg()
        return seg.bmtk_id, seg.x

    #Creates the functional groups and adds the virtual cells to the
    #BMTK NetworkBuilder.
    def _build_exc_nodes(self, segs, base_name, n_cells, start=0):
        """Creates the functional groups and adds the virtual cells to the
                BMTK NetworkBuilder

                Parameters
                ----------
                segs : pandas.DataFrame
                    all the segments available for the functional groups
                base_name : str
                    the string that is appended to to make the group names.
                    groups get 0 - n_groups appended to their names.
                n_cells : int
                    total number of input cells that should be added.
                start : int, optional
                    starting id to be associated with the functional groups, by default 0
                    this is used later to associate cells in functional groups with the correct
                    locations and synapses.

                Returns
                -------
                int
                    what the start parameter should be for the next call to _build_exc_nodes
                list
                    list of functional groups that were created
                """
        start_id = start

        n_groups = n_cells // self.params["groups"]["cells_per_group"]
        n_extra = n_cells % self.params["groups"][
            "cells_per_group"]  #number of extra cells that don't evenly fit into groups

        group_list = []

        for i in range(n_groups):
            name = base_name + str(i)

            #Spreads out the extra cells.
            N = self.params["groups"]["cells_per_group"]
            if i < n_extra:
                N += 1

            self.exc_stim.add_nodes(N=N,
                                    pop_name=name,
                                    potential="exc",
                                    model_type='virtual')

            new_group = FunctionalGroup(
                segs,
                segs.sample().iloc[0], N, self.clust_per_group, name, start_id,
                partial(make_seg_sphere,
                        radius=self.params["groups"]["group_radius"]),
                partial(make_seg_sphere,
                        radius=self.params["groups"]["cluster_radius"]))
            group_list.append(new_group)
            start_id += N

        return start_id, group_list

    def _build_exc_edges(self, group_list):
        """Creates the connections between each cell in the list of groups
                and the biophysical cell.

                Parameters
                ----------
                group_list : list
                    list of functional groups
                """
        for i in range(len(group_list)):
            group = group_list[i]

            #Creates the edges from each excitatory input cells in the group.
            conn = self.net.add_edges(
                source=self.exc_stim.nodes(pop_name=group.name),
                target=self.net.nodes(),
                iterator="all_to_one",
                connection_rule=SimulationBuilder._connector_func,
                connection_params={'cells': group.cells},
                syn_weight=1,
                delay=0.1,
                dynamics_params='PN2PN.json',
                model_template=self.syn['PN2PN.json']['level_of_detail'],
            )

            #Sets the postsynaptic locations of the connections.
            conn.add_properties(['sec_id', "sec_x"],
                                rule=SimulationBuilder._set_location,
                                rule_params={
                                    'cells': group.cells,
                                    'start_id': group.start_id
                                },
                                dtypes=[np.int, np.float])

    def _save_nets(self):
        """builds and saves the BMTK NetworkBuilders
                """
        # Build and save our networks
        np.random.seed(self.seed + 12)
        self.net.build()
        self.net.save_nodes(output_dir='network')
        np.random.seed(self.seed + 16)
        self.net.save_edges(output_dir='network')

        np.random.seed(self.seed + 13)
        self.exc_stim.build()
        self.exc_stim.save_nodes(output_dir='network')

        np.random.seed(self.seed + 14)
        self.prox_inh_stim.build()
        self.prox_inh_stim.save_nodes(output_dir='network')

        np.random.seed(self.seed + 15)
        self.dist_inh_stim.build()
        self.dist_inh_stim.save_nodes(output_dir='network')

    def _build_inh(self):
        """Creates inhibitory input nodes and their connections onto the biophysical cell
                """

        #####################Perisomatic Inhibition##############################
        self.prox_inh_stim = NetworkBuilder('prox_inh_stim')

        #Nodes that connect to soma.
        self.prox_inh_stim.add_nodes(N=self.n_soma_inh,
                                     pop_name='on_soma',
                                     potential='exc',
                                     model_type='virtual')

        #Nodes that connect to proximal dendrites.
        self.prox_inh_stim.add_nodes(N=self.n_prox_dend_inh,
                                     pop_name='on_dend',
                                     potential='exc',
                                     model_type='virtual')

        div_params = self.params["divergence"]["peri_inh"]

        #On soma.
        np.random.seed(self.seed + 5)
        self.net.add_edges(
            source=self.prox_inh_stim.nodes(pop_name='on_soma'),
            target=self.net.nodes(),
            connection_rule=SimulationBuilder._norm_connect,
            connection_params={
                "m": div_params["m"],
                "s": div_params["s"],
                "low": div_params["min"],
                "high": div_params["max"]
            },
            syn_weight=1,
            delay=0.1,
            dynamics_params='PV2PN.json',
            model_template=self.syn['PV2PN.json']['level_of_detail'],
            distance_range=[-2000, 2000.0],
            target_sections=['somatic'])

        #On dendrites within 50 um
        np.random.seed(self.seed + 6)
        self.net.add_edges(
            source=self.prox_inh_stim.nodes(pop_name='on_dend'),
            target=self.net.nodes(),
            connection_rule=SimulationBuilder._norm_connect,
            connection_params={
                "m": div_params["m"],
                "s": div_params["s"],
                "low": div_params["min"],
                "high": div_params["max"]
            },
            syn_weight=1,
            delay=0.1,
            dynamics_params='PV2PN.json',
            model_template=self.syn['PV2PN.json']['level_of_detail'],
            distance_range=[0, 50.0],
            target_sections=['dend'])
        #######################################################################################

        #############################Dendritic Inhibition######################################
        self.dist_inh_stim = NetworkBuilder('dist_inh_stim')

        self.dist_inh_stim.add_nodes(N=self.n_dend_inh,
                                     pop_name='dend',
                                     potential='exc',
                                     model_type='virtual')

        self.dist_inh_stim.add_nodes(N=self.n_apic_inh,
                                     pop_name='apic',
                                     potential='exc',
                                     model_type='virtual')

        div_params = self.params["divergence"]["basal_inh"]

        #Basal edges.
        np.random.seed(self.seed + 7)
        self.net.add_edges(
            source=self.dist_inh_stim.nodes(pop_name="dend"),
            target=self.net.nodes(),
            connection_rule=SimulationBuilder._norm_connect,
            connection_params={
                "m": div_params["m"],
                "s": div_params["s"],
                "low": div_params["min"],
                "high": div_params["max"]
            },
            syn_weight=1,
            delay=0.1,
            dynamics_params='SOM2PN.json',
            model_template=self.syn['SOM2PN.json']['level_of_detail'],
            distance_range=[50, 2000.0],
            target_sections=['dend'])

        div_params = self.params["divergence"]["apic_inh"]

        #Apic edges.
        np.random.seed(self.seed + 8)
        self.net.add_edges(
            source=self.dist_inh_stim.nodes(pop_name="apic"),
            target=self.net.nodes(),
            connection_rule=SimulationBuilder._norm_connect,
            connection_params={
                "m": div_params["m"],
                "s": div_params["s"],
                "low": div_params["min"],
                "high": div_params["max"]
            },
            syn_weight=1,
            delay=0.1,
            dynamics_params='SOM2PN.json',
            model_template=self.syn['SOM2PN.json']['level_of_detail'],
            distance_range=[50, 2000.0],
            target_sections=['apic'])

    def _norm_connect(source, target, m, s, low, high):
        """Returns a random number of synapses based on
                the given distribution.

                Parameters
                ----------
                source : dict
                    source node
                target : dict
                    target node
                m : float
                    mean number of connections
                s : float
                    standard deviation of number of connections
                low : int
                    minimum number of connections
                high : int
                    maximum number of connections

                Returns
                -------
                int
                    number of connections
                """
        return int(min(max(np.random.normal(m, s), low), high))

    def _make_rasters(self):
        """Generates excitatory and inhibitory input rasters
                """
        np.random.seed(self.seed + 9)
        self._gen_exc_spikes('exc_stim_spikes.h5')

        inh_frs = self.params["inh_frs"]

        #Makes perisomatic inhibitory raster.
        np.random.seed(self.seed + 10)
        self._gen_inh_spikes(self.n_soma_inh + self.n_prox_dend_inh,
                             inh_frs["proximal"]["m"],
                             inh_frs["proximal"]["s"],
                             inh_frs["proximal"]["rhythmicity"],
                             "prox_inh_stim", 'prox_inh_stim_spikes.h5')

        #Makes dendritic inhibitory raster.
        np.random.seed(self.seed + 11)
        self._gen_inh_spikes(self.n_apic_inh + self.n_dend_inh,
                             inh_frs["distal"]["m"], inh_frs["distal"]["s"],
                             inh_frs["distal"]["rhythmicity"], "dist_inh_stim",
                             'dist_inh_stim_spikes.h5')

    #Generates the spike raster for a given group.
    #The group has the same noise.
    def _gen_group_spikes(writer, group, seconds, start_time, dist):
        """Generates and writes to a h5 file the given functional group's spike trains

                Parameters
                ----------
                writer : SonataWriter
                    how the spike trains are saved
                group : FunctionalGroup
                    the functional group that the spike trains are being made for
                seconds : float
                    length of the spike trains in seconds
                start_time : float
                    what time (ms) the spike trains should start at
                dist : func
                    function for random distribution used for an individual cell's firing rate
                """
        z = make_noise(
            num_samples=(int(seconds * 1000)) - 1, num_traces=1
        )  #generates the noise trace common to each cell in the functional group.
        make_save_spikes(writer,
                         True,
                         dist(size=group.n_cells),
                         numUnits=group.n_cells,
                         rateProf=np.tile(z[0, :], (group.n_cells, 1)),
                         start_id=group.start_id,
                         start_time=start_time)

    #Creates the excitatory input raster from the functional groups.
    def _gen_exc_spikes(self, fname):
        """Generates the excitatory input raster for all of the functional groups

                Parameters
                ----------
                fname : str
                    name of the file to save the rasters in (.h5)
                """
        #distribution used for generating excitatory firing rates.
        levy_dist = partial(st.levy_stable.rvs,
                            alpha=1.37,
                            beta=-1.00,
                            loc=0.92,
                            scale=0.44,
                            size=1)

        length = self.params["time"]["stop"] - self.params["time"]["start"]
        buffer = self.params["time"]["start"]

        writer = SonataWriter(fname, ["spikes", "exc_stim"],
                              ["timestamps", "node_ids"], [np.float, np.int])

        for group in (self.dend_groups + self.apic_groups):
            SimulationBuilder._gen_group_spikes(writer, group, length,
                                                buffer * 1000, levy_dist)

    #Blocks off the bottom of a normal distribution.
    def _norm_rvs(mean, std):
        """Generates a random float from a normal distribution with a near zero minimum

                Parameters
                ----------
                mean : float
                    mean of the distribution
                std : float
                    standard deviation of the distribution

                Returns
                -------
                float
                    random float
                """
        return max(st.norm.rvs(loc=mean, scale=std, size=1), 0.001)

    # #Makes a spike raster with each cell having its own noise trace.
    # def gen_inh_spikes(n_cells, mean_fr, std_fr, key, file, times):
    #         # node_ids = []
    #         # timestamps = []

    #         length = times[1] - times[0]
    #         buffer = times[0]

    #         writer = SonataWriter(file, ["spikes", key], ["timestamps", "node_ids"], [np.float, np.int])

    #         z = make_noise(num_samples=(int(length*1000))-1,num_traces=1)
    #         make_save_spikes(writer, False, partial(positive_normal, mean=mean_fr, std=std_fr), numUnits=n_cells,rateProf=z[0,:],start_time=buffer*1000)

    #Creates a spike raster with each cell having the same noise coming from the a shifted average of excitation.
    def _gen_inh_spikes(self, n_cells, mean_fr, std_fr, rhythmic_dict, key,
                        fname):
        """Generates a spike raster with each train having the noise trace from
                averaging excitation. Distributes firing rates normally.

                Parameters
                ----------
                n_cells : int
                    number of spike trains
                mean_fr : float
                    mean firing rate
                std_fr : float
                    standard deviation of the firing rate
                rhythmic_dict : dict
                    dictionary with keys f - frequency, mod - depth of modulation
                key : str
                    name of the second group in the h5 file
                fname : str
                    name of file to save the raster to
                """
        # node_ids = []
        # timestamps = []
        a, b = (0 - mean_fr) / std_fr, (100 - mean_fr) / std_fr
        d = partial(st.truncnorm.rvs, a=a, b=b, loc=mean_fr, scale=std_fr)

        if rhythmic_dict['f'] == "None":
            f = h5py.File("exc_stim_spikes.h5", "r")
            ts = f['spikes']["exc_stim"]['timestamps']
            nid = f['spikes']["exc_stim"]['node_ids']

            #Creates a noise trace based on the excitatory spike raster.
            z = shift_exc_noise(ts,
                                nid,
                                self.params["time"]["stop"],
                                time_shift=self.params["inh_shift"])
            z = np.tile(z, (n_cells, 1))

            writer = SonataWriter(fname, ["spikes", key],
                                  ["timestamps", "node_ids"],
                                  [np.float, np.int])
            make_save_spikes(writer,
                             False,
                             d(size=n_cells),
                             numUnits=n_cells,
                             rateProf=z)

        else:
            # make an array of modulated sin waves
            # make_save_spikes should be written so that the firing rates are generated
            #    outside instead of inside the function.
            frs = d(size=n_cells)

            t = np.arange(0, self.params["time"]["stop"], 0.001)
            z = np.zeros((n_cells, t.shape[0]))
            P = 0
            for i in np.arange(0, n_cells):
                offset = frs[i]
                A = offset / ((1 / rhythmic_dict['mod']) - 1)
                z[i, :] = A * np.sin(
                    (2 * np.pi * rhythmic_dict['f'] * t) + P) + offset

            writer = SonataWriter(fname, ["spikes", key],
                                  ["timestamps", "node_ids"],
                                  [np.float, np.int])
            make_save_spikes(writer,
                             False,
                             np.ones((n_cells, 1)),
                             numUnits=n_cells,
                             rateProf=z)

    def _modify_jsons(self):
        """modifies the various json files however is needed after they are built"""
        self._modify_sim_config()

    def _modify_sim_config(self):
        """modifies the simulation_config.json however is needed"""
        with open("simulation_config.json", "r") as jsonFile:
            sim_config = json.load(jsonFile)

        self._update_cellvar_record_locs(sim_config)

        with open("simulation_config.json", "w") as jsonFile:
            json.dump(sim_config, jsonFile, indent=2)

    def _update_cellvar_record_locs(self, sim_config):
        """modifies the location of cellvar recordings in the given JSON simulation_config
                
                Parameters
                ----------
                sim_config : dict
                    simulation_config to modify
                """
        reports = sim_config["reports"]
        cellvar_reports = [
            report for report in reports.values()
            if report["module"] == "membrane_report"
        ]

        for loc, report in zip(self.params["record_cellvars"]["locs"],
                               cellvar_reports):
            report["sections"] = loc