Exemplo n.º 1
0
def train_behavioural_bn(bn: OpenBooleanNetwork) -> (OpenBooleanNetwork, VNSOutput):

    spawn_points = GLOBALS.generate_spawn_points()

    terminal_nodes = get_terminal_nodes(bn)
    to_never_flip = set(map(hash, bn.input_nodes + terminal_nodes))

    train_scores_cmp = GLOBALS.eval_cmp_function
    train_eval_fn = lambda bn, ct: pt_evaluation_for_train(bn, ct, spawn_points)
    train_scramble_strategy = lambda bn, nf, e: bn_scramble_strategy(bn, nf, e.union(to_never_flip))
    train_tidy_strategy = edit_boolean_network

    pvns = VNS(
        sol_evaluator=train_eval_fn,
        sols_comparator=train_scores_cmp,
        sol_scrambler=train_scramble_strategy,
        sol_tidier=train_tidy_strategy
    )

    params = VNSParameters(
        target_score=flat((GLOBALS.sd_target_score, float('+inf')), to=tuple),
        min_flips=GLOBALS.sd_min_flips,
        max_flips=sum(2**n.arity for n in bn.nodes if hash(n.label) not in to_never_flip),
        max_iters=GLOBALS.sd_max_iters,
        max_stalls=GLOBALS.sd_max_stalls,
        max_stagnation=GLOBALS.sd_max_stagnation
    )

    return pvns(bn, params)
Exemplo n.º 2
0
def pt_evaluation_for_test(bn: OpenBooleanNetwork, test_params: Iterable):
    '''
    Run a simulation for each set of test parameters. 
    '''
    
    data = []

    for tp in test_params:
        
        ### Generate ad hoc configuration for simulation purposes only ################################
        simconfig = GLOBALS.generate_sim_config()

        ### Generate simulation world file for simulation purposes only ################################
        if not simconfig.webots_world_path.exists():

            logger.info('Generated webots world file from template...')
            
            stub_utils.generate_webots_worldfile(
                GLOBALS.webots_world_path, 
                simconfig.webots_world_path,
                simconfig.arena_params
            )
        
        # May be launched parallel (... ?)
        data.append(
            evaluate_pt_bncontroller(simconfig, bn, tp)
        )

    return tuple(list(e) for e in zip(*data))
Exemplo n.º 3
0
def test_bncontrollers(bns: dict):
    '''
    Test each BN in the collection on the same set of points.

    Return the collected evaluation data for each test.
    '''

    spawn_points = GLOBALS.generate_spawn_points()

    data = dict()

    for k in bns:

        logger.info(f"Boolean Network {k}")

        test_params = generate_test_params(spawn_points)

        data[k] = test_bncontroller(bns[k], test_params)

    return data
Exemplo n.º 4
0
from bncontroller.sim.utils import GLOBALS, load_global_config
from bncontroller.filelib.utils import get_dir, FROZEN_DATE
from bncontroller.stubs.selector.utils import template_selector_generator
from bncontroller.stubs.selector.generation import generate_consistent_bnselector as generate_consistent_bnselector

if __name__ == "__main__":

    load_global_config()

    N, K, P, I, O = GLOBALS.bn_n, GLOBALS.bn_k, GLOBALS.bn_p, GLOBALS.bn_n_inputs, GLOBALS.bn_n_outputs

    path = get_dir(Path(GLOBALS.bn_model_path), create_if_dir=True)

    for l in range(GLOBALS.sd_max_iters):

        bn = GLOBALS.app_core_function()

        Path(path /
             f'{l}_bn_n{N}_k{K}_p{int(P*100)}_{FROZEN_DATE}.ebnf').write_text(
                 bn.to_ebnf())

        Path(path /
             f'{l}_bn_n{N}_k{K}_p{int(P*100)}_{FROZEN_DATE}.json').write_text(
                 bn.to_json())

        df = DataFrame(bn.atm.dtableau)

        df.to_csv(str(path / f'{l}_atm_{FROZEN_DATE}.csv'))

    exit(1)
Exemplo n.º 5
0
            date=FROZEN_DATE,
        ))

    ### BN Generation / Loading ####################################################

    bn = generate_or_load_bn(params=GLOBALS.bn_params,
                             path=GLOBALS.bn_model_path,
                             save_virgin=True)

    ### Launch search algorithm ##############################################

    if not GLOBALS.train_generate_only:

        t = time.perf_counter()

        bn, ctx = GLOBALS.app_core_function(bn)

        logger.info(f"Search time: {time.perf_counter() - t}s")

        logger.info(ctx)

        savepath = GLOBALS.bn_model_path / 'behavioural_bn_{date}.json'.format(
            mode=GLOBALS.app['mode'], date=FROZEN_DATE)

        write_json(bn, savepath)

        logger.info(f'Output model saved to {savepath}.')

    logger.info('Closing...')

    logger.flush()
Exemplo n.º 6
0
            key=GLOBALS.app['mode'],
            date=futils.FROZEN_DATE,
        ))

    ### Load Test Model(s) from Template paths ####################################

    files, bns = collect_bn_models(GLOBALS.bn_model_path)

    ### Test ######################################################################
    t = time.perf_counter()

    for i in range(GLOBALS.test_n_instances):

        logger.info(f'Test instance n°{i}')

        instance_data = GLOBALS.app_core_function(bns)

        for k, test_data in instance_data.items():

            name = futils.gen_fname(
                futils.get_simple_fname(files[k].name,
                                        futils.FNAME_PATTERN,
                                        uniqueness=2),
                template='rtest_data_{name}' + f'_in{i}.json',
            )

            test_data.to_json(GLOBALS.test_data_path / name,
                              default_handler=jsonrepr)

            logger.info(
                f'Test data saved into {str(GLOBALS.test_data_path / name)}')
Exemplo n.º 7
0
        GLOBALS.bn_params = N, K, P, Q, I, O

        if not isinstance(tTau, dict):
            GLOBALS.slct_target_transition_tau = {
                "a0": {"a0": tTau, "a1": tTau},
                "a1": {"a0": tTau, "a1": tTau}
            }

        GLOBALS.slct_noise_rho = nRho
        GLOBALS.slct_target_n_attractors = aN
        GLOBALS.slct_input_steps_phi = iPhi
        
        t = time.perf_counter()

        bn = GLOBALS.app_core_function(mapper)

        logger.info(time.perf_counter() - t)

        while bn is None or not bn.attractors_input_map or None in bn.attractors_input_map:
            logger.info('Failure. Retrying...')
            t = time.perf_counter()
            bn = GLOBALS.app_core_function()
            logger.info(time.perf_counter() - t)

        logger.info(dict(**bn.attractors_input_map))
        logger.info(dict(**bn.atm.dtableau))
        logger.info(dict(**bn.atm.dattractors))

        path = FOLDER / f'selective_bn_{iso8106(ms=3)}.json'
Exemplo n.º 8
0
from bncontroller.boolnet.structures import OpenBooleanNetwork
from bncontroller.rtest import find_bn_type

if __name__ == "__main__":

    load_global_config()

    if isinstance(GLOBALS.bn_model_path,
                  list) or GLOBALS.bn_model_path.is_dir():
        raise Exception('Model path should be a file.')

    GLOBALS.app['mode'] = 'handcheck'

    bn = find_bn_type(read_json(GLOBALS.bn_model_path))

    config = GLOBALS.generate_sim_config()

    ### Generate simulation world file for training ################################

    stub_utils.generate_webots_worldfile(GLOBALS.webots_world_path,
                                         config.webots_world_path,
                                         config.arena_params)

    stub_utils.generate_webots_props_file(GLOBALS.webots_world_path,
                                          config.webots_world_path)
    try:
        proc_closure = stub_utils.run_simulation(config, bn)
    except Exception:
        pass

    stub_utils.clean_dir(