Exemplo n.º 1
0
def plotDocUsageForProposal(docUsageByUID, savefilename=None, **kwargs):
    ''' Make trace plot of doc usage for each component.
    '''
    pylab.figure()
    L = 0
    maxVal = 0
    for k, uid in enumerate(docUsageByUID):
        ys = np.asarray(docUsageByUID[uid])
        xs = np.arange(0, ys.size)
        if k < 6: # only a few labels fit well on a legend
            pylab.plot(xs, ys, label=uid)
        else:
            pylab.plot(xs, ys)
        L = np.maximum(L, ys.size)
        maxVal = np.maximum(maxVal, ys.max())
    # Use big chunk of left-hand side of plot for legend display
    xlims = np.asarray([-0.75*L, L-0.5])
    pylab.xlim(xlims)
    pylab.xticks(np.arange(1, L))
    pylab.ylim([0, 1.1*maxVal])
    pylab.xlabel('num proposal steps')
    pylab.ylabel('num docs using each comp')
    pylab.legend(loc='upper left', fontsize=12)
    pylab.subplots_adjust(left=0.2)
    if savefilename is not None:
        pylab.savefig(savefilename, pad_inches=0)
        pylab.close('all')
Exemplo n.º 2
0
def makePlot(muVals=[(0.01,0), (0.1,0), (1,0), (10,0)], doCorrection=1):
    pylab.figure()
    xgrid = np.linspace(-8, 8, 2000)
    pylab.hold('on')
    pylab.plot(xgrid, np.zeros_like(xgrid), ':', alpha=0.2)
    for mu1, mu2 in muVals:
        ygrid = calcBregDiv_Gauss1D(xgrid, mu1, mu2, doCorrection=doCorrection)
        print ygrid.min()
        pylab.plot(xgrid, ygrid, label='mu1=% 6.2f mu2=% 6.2f' % (mu1, mu2))
    pylab.legend(loc='lower right')
    pylab.xlim([xgrid.min(), xgrid.max()])
    pylab.ylim([xgrid.min(), xgrid.max()])
    pylab.xlabel('x')
    if doCorrection:
        pylab.ylabel('D(x, \mu) + correction')
    else:
        pylab.ylabel('D(x, \mu)')
Exemplo n.º 3
0
def makePlot(muVals=[0.01, 0.1, 1, 10], B=1e-10, nu=2, justMahalTerm=0):
    pylab.figure()
    xgrid = np.linspace(0, 8, 2000)
    pylab.hold('on')
    for mu in muVals:
        ygrid = calcBregDiv_ZeroMean(xgrid,
                                     mu,
                                     B=B,
                                     nu=nu,
                                     justMahalTerm=justMahalTerm)
        pylab.plot(xgrid, ygrid, linewidth=2, label='\mu=%6.2f' % (mu))
    pylab.legend(loc='upper right')
    pylab.xlim([-0.1, xgrid.max()])
    pylab.ylim([-0.1, xgrid.max()])
    pylab.xlabel('x')
    pylab.ylabel('D(x, \mu)')
    pylab.title('B=%s  nu=%s' % (str(B), str(nu)))
Exemplo n.º 4
0
def plotELBOtermsForProposal(
        curLdict, propLdictList,
        xs=None,
        ymin=-0.5,
        ymax=0.5,
        savefilename=None,
        **kwargs):
    ''' Create trace plot of ELBO gain/loss relative to current model.
    '''
    pylab.figure()
    L = len(propLdictList)
    if xs is None:
        xs = np.arange(0, L)
    legendKeys = []
    for key in curLdict:
        if key.count('_') == 0:
            legendKeys.append(key)
    for key in legendKeys:
        if key.count('total'):
            linewidth= 4
            alpha = 1
            style = '-'
        else:
            linewidth = 3
            alpha = 0.5
            style = '--'
        ys = np.asarray([propLdictList[i][key] for i in range(L)])
        ys -= curLdict[key]
        pylab.plot(xs, ys, style,
                   color=_getLineColorFromELBOKey(key),
                   linewidth=linewidth,
                   alpha=alpha,
                   label=key)
    L = L + 1
    xlims = np.asarray([-0.75*L, L-0.5])
    pylab.xlim(xlims)
    pylab.xticks(xs)
    pylab.plot(xlims, np.zeros_like(xlims), 'k:')
    pylab.xlabel('num proposal steps')
    pylab.ylabel('L gain (prop - current)')
    pylab.legend(loc='lower left', fontsize=12)
    pylab.subplots_adjust(left=0.2)
    if savefilename is not None:
        pylab.savefig(savefilename, pad_inches=0)
        pylab.close('all')
Exemplo n.º 5
0
def plotSingleLineAcrossJobsByXVar(jpathPattern,
                                   label='',
                                   xvar=None,
                                   xvals=None,
                                   xlabel=None,
                                   yvar='evidence',
                                   lineStyle='.-',
                                   taskids='all',
                                   lineID=0,
                                   lvar='',
                                   **kwargs):
    ''' Create line plot in current figure for job matching the pattern

    Iterates over each xval in provided list of values.
    Each one corresponds to a single saved job.

    Post Condition
    --------------
    Current axes have one line added.
    '''
    prefixfilepath = os.path.sep.join(jpathPattern.split(os.path.sep)[:-1])
    PPListMap = makePPListMapFromJPattern(jpathPattern)
    if xvals is None:
        xvals = PPListMap[xvar]

    xs = np.zeros(len(xvals))
    ys = np.zeros(len(xvals))
    jpathList = makeListOfJPatternsWithSpecificVals(
        PPListMap,
        prefixfilepath=prefixfilepath,
        key=xvar,
        vals=xvals,
        **kwargs)

    plotargs = copy.deepcopy(DefaultLinePlotKwArgs)
    # Plot all tasks as faint points with no connections
    for i, jobpath in enumerate(jpathList):
        if not os.path.exists(jobpath):
            raise ValueError("PATH NOT FOUND: %s" % (jobpath))
        x = float(xvals[i])

        for key in plotargs:
            if key in kwargs:
                plotargs[key] = kwargs[key]
        plotargs['markeredgecolor'] = plotargs['color']

        alltaskids = BNPYArgParser.parse_task_ids(jobpath, taskids)
        for tid in alltaskids:
            y = loadYValFromDisk(jobpath, tid, yvar=yvar)
            pylab.plot(x, y, '.', **plotargs)

    # Plot top-ranked tasks as solid points connected by line
    for i, jobpath in enumerate(jpathList):
        rankTasksForSingleJobOnDisk(os.path.join(jobpath))
        x = float(xvals[i])
        y = loadYValFromDisk(jobpath, '.best', yvar=yvar)
        assert isinstance(x, float)
        assert isinstance(y, float)
        xs[i] = x
        ys[i] = y

    plotargs = copy.deepcopy(DefaultLinePlotKwArgs)
    for key in plotargs:
        if key in kwargs:
            plotargs[key] = kwargs[key]
    plotargs['markeredgecolor'] = plotargs['color']
    plotargs['label'] = label
    pylab.plot(xs, ys, lineStyle, **plotargs)

    if lineID == 0:
        if xlabel is None:
            xlabel = xvar
        pylab.xlabel(xlabel)
        pylab.ylabel(LabelMap[yvar])
Exemplo n.º 6
0
def plotCovMatFromHModel(hmodel,
                         compListToPlot=None,
                         compsToHighlight=None,
                         proba_thr=0.001,
                         ax_handle=None,
                         **kwargs):
    ''' Plot square image of covariance matrix for each component.

    Parameters
    -------
    hmodel : bnpy HModel object
    compListToPlot : array-like of integer IDs of components within hmodel
    compsToHighlight : int or array-like
        integer IDs to highlight
        if None, all components get unique colors
        if not None, only highlighted components get colors.
    proba_thr : float
        Minimum weight assigned to component in order to be plotted.
        All components with weight below proba_thr are ignored.
    '''

    nRow = 2
    nCol = int(np.ceil(hmodel.obsModel.K / 2.0))
    if ax_handle is None:
        ax_handle = pylab.subplots(nrows=nRow,
                                   ncols=nCol,
                                   figsize=(nCol * 2, nRow * 2))
    else:
        pylab.subplots(nrows=nRow, ncols=nCol, num=ax_handle.number)

    if compsToHighlight is not None:
        compsToHighlight = np.asarray(compsToHighlight)
        if compsToHighlight.ndim == 0:
            compsToHighlight = np.asarray([compsToHighlight])
    else:
        compsToHighlight = list()
    if compListToPlot is None:
        compListToPlot = np.arange(0, hmodel.obsModel.K)

    if hmodel.allocModel.K == hmodel.obsModel.K:
        w = hmodel.allocModel.get_active_comp_probs()
    else:
        w = np.ones(hmodel.obsModel.K)

    colorID = 0
    for plotID, kk in enumerate(compListToPlot):
        if w[kk] < proba_thr and kk not in compsToHighlight:
            Sigma = getEmptyCompSigmaImage(hmodel.obsModel.D)
            clim = [0, 1]
        else:
            Sigma = hmodel.obsModel.get_covar_mat_for_comp(kk)
            clim = [-.25, 1]
        pylab.subplot(nRow, nCol, plotID + 1)
        pylab.imshow(Sigma, interpolation='nearest', cmap='hot', clim=clim)
        pylab.xticks([])
        pylab.yticks([])
        pylab.xlabel('%.2f' % (w[kk]))
        if kk in compsToHighlight:
            pylab.xlabel('***')

    for emptyID in range(plotID + 1, nRow * nCol):
        aH = pylab.subplot(nRow, nCol, emptyID + 1)
        aH.axis('off')
Exemplo n.º 7
0
def plotCompsAsSquareImages(
        phi,
        compsToHighlight=None,
        compListToPlot=None,
        activeCompIDs=None,
        xlabels=[],
        Kmax=50,
        W=1,
        H=1,
        figH=None,
        vocabList=None,  # catchall
        **kwargs):
    curImshowArgs = dict(**imshowArgs)
    curImshowArgs.update(kwargs)

    if len(xlabels) > 0:
        H = 1.5 * H
    K, V = phi.shape
    sqrtV = int(np.sqrt(V))
    assert np.allclose(sqrtV, np.sqrt(V))

    if compListToPlot is None:
        compListToPlot = np.arange(0, K)
    if activeCompIDs is None:
        activeCompIDs = np.arange(0, K)
    compsToHighlight = np.asarray(compsToHighlight)
    if compsToHighlight.ndim == 0:
        compsToHighlight = np.asarray([compsToHighlight])

    # Create Figure
    Kplot = np.minimum(len(compListToPlot), Kmax)
    ncols = 3  # int(np.ceil(Kplot / float(nrows)))
    nrows = int(np.ceil(Kplot / float(ncols)))
    if figH is None:
        # Make a new figure
        figH, ha = pylab.subplots(nrows=nrows,
                                  ncols=ncols,
                                  figsize=(ncols * W, nrows * H))
    else:
        # Use existing figure
        # TODO: Find a way to make this call actually change the figsize
        figH, ha = pylab.subplots(nrows=nrows,
                                  ncols=ncols,
                                  figsize=(ncols * W, nrows * H),
                                  num=figH.number)

    for plotID, compID in enumerate(compListToPlot):
        if plotID >= Kmax:
            print('DISPLAY LIMIT EXCEEDED. Showing %d/%d components' \
                % (plotID, len(activeCompIDs)))
            break

        if compID not in activeCompIDs:
            aH = pylab.subplot(nrows, ncols, plotID + 1)
            aH.axis('off')
            continue

        kk = np.flatnonzero(compID == activeCompIDs)[0]
        phiIm = np.reshape(phi[kk, :], (sqrtV, sqrtV))

        ax = pylab.subplot(nrows, ncols, plotID + 1)
        pylab.imshow(phiIm, aspect=1.0, **curImshowArgs)
        pylab.xticks([])
        pylab.yticks([])

        # Draw colored border around highlighted topics
        if compID in compsToHighlight:
            [i.set_color('green') for i in ax.spines.values()]
            [i.set_linewidth(3) for i in ax.spines.values()]

        if xlabels is not None:
            if len(xlabels) > 0:
                pylab.xlabel(xlabels[plotID], fontsize=15)

    # Disable empty plots!
    for kdel in range(plotID + 2, nrows * ncols + 1):
        aH = pylab.subplot(nrows, ncols, kdel)
        aH.axis('off')

    # Fix margins between subplots
    pylab.subplots_adjust(wspace=0.04,
                          hspace=0.04,
                          left=0.01,
                          right=0.99,
                          top=0.99,
                          bottom=0.01)
    return figH
Exemplo n.º 8
0
def plot_all_tasks_for_job(jobpath, label, taskids=None,
                           lineType='.-',
                           spreadLineType='--',
                           color=None,
                           yvar='avgLikScore',
                           xvar='laps',
                           markersize=10,
                           linewidth=2,
                           minLap=0,
                           showFinalPt=0,
                           fileSuffix='PredLik.mat',
                           xjitter=None,
                           prefix='predlik',
                           colorID=0,
                           **kwargs):
    ''' Create line plot in current figure for each task/run of jobpath
    '''
    if not os.path.exists(jobpath):
        print('PATH NOT FOUND', jobpath)
        return None
    if not yvar.startswith('avg') and yvar.count('Kactive') == 0:
        yvar = 'avg' + yvar
    if not yvar.endswith('Score') and yvar.count('Kactive') == 0:
        yvar = yvar + 'Score'

    if color is None:
        color = Colors[colorID % len(Colors)]
    taskids = BNPYArgParser.parse_task_ids(jobpath, taskids)

    for tt, taskid in enumerate(taskids):
        taskoutpath = os.path.join(jobpath, taskid)
        hpaths = glob.glob(os.path.join(taskoutpath, '*' + fileSuffix))
        txtpaths = glob.glob(os.path.join(taskoutpath, 'predlik-*.txt'))
        ys_hi = None
        ys_lo = None
        if len(txtpaths) > 0:
            if fileSuffix.endswith('.txt'):
                suffix = '-' + fileSuffix
            else:
                suffix = '.txt'
            if xvar.count('lap'):
                xs = np.loadtxt(
                    os.path.join(taskoutpath, prefix + '-lapTrain.txt'))
            elif xvar.count('K'):
                xs = np.loadtxt(os.path.join(taskoutpath, prefix + '-K.txt'))
            elif xvar.count('time'):
                xs = np.loadtxt(os.path.join(
                    taskoutpath, prefix + '-timeTrain.txt'))
            else:
                raise ValueError("Unrecognized xvar: " + xvar)
            if yvar.count('Kactive') and not yvar.count('Percentile'):
                ys = np.loadtxt(os.path.join(taskoutpath,
                        prefix + '-' + yvar + 'Percentile50.txt'))
                ys_lo = np.loadtxt(os.path.join(taskoutpath,
                    prefix + '-' + yvar + 'Percentile10.txt'))
                ys_hi = np.loadtxt(os.path.join(taskoutpath,
                    prefix + '-' + yvar + 'Percentile90.txt'))
            else:
                ys = np.loadtxt(
                    os.path.join(taskoutpath, prefix + '-' + yvar + suffix))

            if minLap > 0 and taskoutpath.count('fix'):
                mask = laps > minLap
                xs = xs[mask]
                ys = ys[mask]
        elif len(hpaths) > 0:
            hpaths.sort()
            basenames = [x.split(os.path.sep)[-1] for x in hpaths]
            xs = np.asarray([float(x[3:11]) for x in basenames])
            ys = np.zeros_like(xs)
            for ii, hpath in enumerate(hpaths):
                MatVars = scipy.io.loadmat(hpath)
                ys[ii] = float(MatVars['avgPredLL'])
        else:
            raise ValueError(
                'Pred Lik data unavailable for job\n' + taskoutpath)

        plotargs = dict(markersize=markersize, linewidth=linewidth, label=None,
                        color=color, markeredgecolor=color,
                        )
        plotargs.update(kwargs)

        if tt == 0:
            plotargs['label'] = label
        if xjitter is not None:
            xs = xs + xjitter
        pylab.plot(xs, ys, lineType, **plotargs)
        if ys_lo is not None:
            del plotargs['label']
            pylab.plot(xs, ys_lo, spreadLineType, **plotargs)
            pylab.plot(xs, ys_hi, spreadLineType, **plotargs)

        if showFinalPt:
            pylab.plot(xs[-1], ys[-1], '.', **plotargs)
    pylab.xlabel(XLabelMap[xvar])
    pylab.ylabel(YLabelMap[yvar])
Exemplo n.º 9
0
def plot_all_tasks_for_job(jobpath,
                           label,
                           taskids=None,
                           color=None,
                           colorID=0,
                           density=2,
                           yvar='evidence',
                           markersize=10,
                           linewidth=2,
                           linestyle='-',
                           drawLineToXMax=None,
                           showOnlyAfterLap=0,
                           xvar='laps',
                           **kwargs):
    ''' Create line plot in current figure for each task/run of jobpath
    '''
    if not os.path.exists(jobpath):
        if not jobpath.startswith(os.path.sep):
            jobpath_tmp = os.path.join(os.environ['BNPYOUTDIR'], jobpath)
            if not os.path.exists(jobpath_tmp):
                raise ValueError("PATH NOT FOUND: %s" % (jobpath))
            jobpath = jobpath_tmp
    if color is None:
        color = Colors[colorID % len(Colors)]
    taskids = BNPYArgParser.parse_task_ids(jobpath, taskids)

    if yvar == 'hamming-distance':
        yspfile = os.path.join(jobpath, taskids[0], yvar + '-saved-params.txt')
        if xvar == 'laps' and os.path.isfile(yspfile):
            xvar = 'laps-saved-params'

    for tt, taskid in enumerate(taskids):
        xs = None
        ys = None
        laps = None

        try:
            var_ext = ''
            ytxtfile = os.path.join(jobpath, taskid, yvar + '.txt')
            if not os.path.isfile(ytxtfile):
                var_ext = '-saved-params'
                ytxtfile = os.path.join(jobpath, taskid,
                                        yvar + var_ext + '.txt')
            ys = np.loadtxt(ytxtfile)

            if ytxtfile.count('saved-params'):
                laptxtfile = os.path.join(jobpath, taskid,
                                          'laps-saved-params.txt')
            else:
                laptxtfile = os.path.join(jobpath, taskid, 'laps.txt')
        except IOError as e:
            # TODO: when is this code needed?
            # xs, ys = loadXYFromTopicModelFiles(jobpath, taskid)
            try:
                if isinstance(xs, np.ndarray) and yvar.count('Keff'):
                    ys = loadKeffForTask(os.path.join(jobpath, taskid),
                                         **kwargs)
                    assert xs.size == ys.size
                else:
                    # Heldout metrics
                    xs, ys = loadXYFromTopicModelSummaryFiles(jobpath,
                                                              taskid,
                                                              xvar=xvar,
                                                              yvar=yvar)
                    if showOnlyAfterLap and showOnlyAfterLap > 0:
                        laps, _ = loadXYFromTopicModelSummaryFiles(jobpath,
                                                                   taskid,
                                                                   xvar='laps',
                                                                   yvar=yvar)
            except ValueError:
                try:
                    xs, ys = loadXYFromTopicModelSummaryFiles(jobpath, taskid)
                except ValueError:
                    raise e
        if yvar == 'hamming-distance' or yvar == 'Keff':
            if xvar == 'laps-saved-params':
                # fix off-by-one error, if we save an extra dist on final lap
                if xs.size == ys.size - 1:
                    ys = ys[:-1]
                elif ys.size == xs.size - 1:
                    xs = xs[:-1]  # fix off-by-one error, if we quit early
            elif xs.size != ys.size:
                # Try to subsample both time series at laps where they
                # intersect
                laps_x = np.loadtxt(os.path.join(jobpath, taskid, 'laps.txt'))
                laps_y = np.loadtxt(
                    os.path.join(jobpath, taskid, 'laps-saved-params.txt'))
                assert xs.size == laps_x.size
                if ys.size == laps_y.size - 1:
                    laps_y = laps_y[:-1]
                xs = xs[np.in1d(laps_x, laps_y)]
                ys = ys[np.in1d(laps_y, laps_x)]

        if xs.size != ys.size:
            raise ValueError('Dimension mismatch. len(xs)=%d, len(ys)=%d' %
                             (xs.size, ys.size))

        # Cleanup laps data. Verify that it is sorted, with no collisions.
        if xvar == 'laps':
            diff = xs[1:] - xs[:-1]
            goodIDs = np.flatnonzero(diff >= 0)
            if len(goodIDs) < xs.size - 1:
                print(
                    'WARNING: looks like multiple runs writing to this file!')
                print(jobpath)
                print('Task: ', taskid)
                print(len(goodIDs), xs.size - 1)
                xs = np.hstack([xs[goodIDs], xs[-1]])
                ys = np.hstack([ys[goodIDs], ys[-1]])

        if xvar == 'laps' and yvar == 'evidence':
            mask = xs >= 1.0
            xs = xs[mask]
            ys = ys[mask]
        elif showOnlyAfterLap:
            # print "Filtering for data recorded at lap >= %s" % (
            #    showOnlyAfterLap)
            if laps is None:
                laps = np.loadtxt(laptxtfile)
            mask = laps >= showOnlyAfterLap
            xs = xs[mask]
            ys = ys[mask]

        # Force plot density (data points per lap) to desired specification
        # This avoids making plots that have huge file sizes,
        # due to too much content in the given display space
        if xvar == 'laps' and xs.size > 20 and np.sum(xs > 5) > 10:
            if (xs[-1] - xs[9]) != 0:
                curDensity = (xs.size - 10) / (xs[-1] - xs[9])
            else:
                curDensity = density
            while curDensity > density and xs.size > 11:
                # Thin xs and ys data by a factor of 2
                # while preserving the first 10 data points
                xs = np.hstack([xs[:10], xs[10::2]])
                ys = np.hstack([ys[:10], ys[10::2]])
                curDensity = (xs.size - 10) / (xs[-1] - xs[9])

        plotargs = dict(markersize=markersize,
                        linewidth=linewidth,
                        linestyle=linestyle,
                        label=None,
                        color=color,
                        markeredgecolor=color)
        for key in kwargs:
            if key in plotargs:
                plotargs[key] = kwargs[key]
        if tt == 0:
            plotargs['label'] = label

        pylab.plot(xs, ys, **plotargs)
        if drawLineToXMax:
            xs_dashed = np.asarray([xs[-1], drawLineToXMax])
            ys_dashed = np.asarray([ys[-1], ys[-1]])
            plotargs['label'] = None
            pylab.plot(xs_dashed, ys_dashed, '--', **plotargs)

    pylab.xlabel(LabelMap[xvar])
    if yvar in LabelMap:
        yLabelStr = LabelMap[yvar]
        if yvar == 'Keff' and 'effCountThr' in kwargs:
            effCountThr = float(kwargs['effCountThr'])
            yLabelStr = yLabelStr + ' > %s' % (str(effCountThr))
        pylab.ylabel(yLabelStr)
Exemplo n.º 10
0
def plotExampleBarsDocs(Data,
                        docIDsToPlot=None,
                        figID=None,
                        vmax=None,
                        nDocToPlot=16,
                        doShowNow=False,
                        seed=0,
                        randstate=np.random.RandomState(0),
                        xlabels=None,
                        W=1,
                        H=1,
                        **kwargs):
    kwargs['vmin'] = 0
    kwargs['interpolation'] = 'nearest'
    if vmax is not None:
        kwargs['vmax'] = vmax
    if seed is not None:
        randstate = np.random.RandomState(seed)
    V = Data.vocab_size
    sqrtV = int(np.sqrt(V))
    assert np.allclose(sqrtV * sqrtV, V)
    if docIDsToPlot is not None:
        nDocToPlot = len(docIDsToPlot)
    else:
        size = np.minimum(Data.nDoc, nDocToPlot)
        docIDsToPlot = randstate.choice(Data.nDoc, size=size, replace=False)
    ncols = 5
    nrows = int(np.ceil(nDocToPlot / float(ncols)))
    if vmax is None:
        DocWordArr = Data.getDocTypeCountMatrix()
        vmax = int(np.max(np.percentile(DocWordArr, 98, axis=0)))

    if figID is None:
        figH, ha = pylab.subplots(nrows=nrows,
                                  ncols=ncols,
                                  figsize=(ncols * W, nrows * H))

    for plotPos, docID in enumerate(docIDsToPlot):
        start = Data.doc_range[docID]
        stop = Data.doc_range[docID + 1]
        wIDs = Data.word_id[start:stop]
        wCts = Data.word_count[start:stop]
        docWordHist = np.zeros(V)
        docWordHist[wIDs] = wCts
        squareIm = np.reshape(docWordHist, (sqrtV, sqrtV))
        pylab.subplot(nrows, ncols, plotPos + 1)
        pylab.imshow(squareIm, **kwargs)
        pylab.axis('image')
        pylab.xticks([])
        pylab.yticks([])
        if xlabels is not None:
            pylab.xlabel(xlabels[plotPos])

    # Disable empty plots!
    for kdel in range(plotPos + 2, nrows * ncols + 1):
        aH = pylab.subplot(nrows, ncols, kdel)
        aH.axis('off')

    # Fix margins between subplots
    pylab.subplots_adjust(wspace=0.04,
                          hspace=0.04,
                          left=0.01,
                          right=0.99,
                          top=0.99,
                          bottom=0.01)
    if doShowNow:
        pylab.show()