def __get_smpl_model(demo_type, smpl_type): smplx_model_path = './extra_data/smpl/SMPLX_NEUTRAL.pkl' smpl_model_path = './extra_data/smpl//basicModel_neutral_lbs_10_207_0_v1.0.0.pkl' if demo_type == 'hand': # use original smpl-x smpl = smplx.create(smplx_model_path, model_type="smplx", batch_size=1, gender='neutral', num_betas=10, use_pca=False, ext='pkl') else: if smpl_type == 'smplx': # use modified smpl-x from body module smpl = SMPLX(smplx_model_path, batch_size=1, num_betas=10, use_pca=False, create_transl=False) else: # use modified smpl from body module assert smpl_type == 'smpl' smpl = SMPL(smpl_model_path, batch_size=1, create_transl=False) return smpl
def __init__(self, regressor_checkpoint, smpl_dir, device=torch.device('cuda'), use_smplx=False): self.device = torch.device( 'cuda') if torch.cuda.is_available() else torch.device('cpu') # Load parametric model (SMPLX or SMPL) if use_smplx: smplModelPath = smpl_dir + '/SMPLX_NEUTRAL.pkl' self.smpl = SMPLX(smpl_dir, batch_size=1, num_betas=10, use_pca=False, create_transl=False).to(self.device) self.use_smplx = True else: smplModelPath = smpl_dir + '/basicModel_neutral_lbs_10_207_0_v1.0.0.pkl' self.smpl = SMPL(smplModelPath, batch_size=1, create_transl=False).to(self.device) self.use_smplx = False #Load pre-trained neural network SMPL_MEAN_PARAMS = './extra_data/body_module/data_from_spin/smpl_mean_params.npz' self.model_regressor = hmr(SMPL_MEAN_PARAMS).to(self.device) checkpoint = torch.load(regressor_checkpoint) self.model_regressor.load_state_dict(checkpoint['model'], strict=False) self.model_regressor.eval()
def __init__(self, regressor_checkpoint, smpl_dir, device=torch.device('cuda'), bUseSMPLX=False): self.device = torch.device( 'cuda') if torch.cuda.is_available() else torch.device('cpu') #Load parametric model (SMPLX or SMPL) if bUseSMPLX: self.smpl = SMPLX(smpl_dir, batch_size=1, create_transl=False).to(self.device) else: smplModelPath = smpl_dir + '/basicModel_neutral_lbs_10_207_0_v1.0.0.pkl' self.smpl = SMPL(smplModelPath, batch_size=1, create_transl=False).to(self.device) #Load pre-trained neural network self.model_regressor = hmr(config.SMPL_MEAN_PARAMS).to(self.device) checkpoint = torch.load(regressor_checkpoint) self.model_regressor.load_state_dict(checkpoint['model'], strict=False) self.model_regressor.eval() self.normalize_img = Normalize(mean=constants.IMG_NORM_MEAN, std=constants.IMG_NORM_STD) self.de_normalize_img = Normalize(mean=[ -constants.IMG_NORM_MEAN[0] / constants.IMG_NORM_STD[0], -constants.IMG_NORM_MEAN[1] / constants.IMG_NORM_STD[1], -constants.IMG_NORM_MEAN[2] / constants.IMG_NORM_STD[2] ], std=[ 1 / constants.IMG_NORM_STD[0], 1 / constants.IMG_NORM_STD[1], 1 / constants.IMG_NORM_STD[2] ])
def init_fn(self): self.train_ds = MixedDataset(self.options, ignore_3d=self.options.ignore_3d, is_train=True) self.model = hmr(config.SMPL_MEAN_PARAMS, pretrained=True).to(self.device) if self.options.bExemplarMode: lr = 5e-5 * 0.2 else: lr = self.options.lr self.optimizer = torch.optim.Adam( params=self.model.parameters(), # lr=self.options.lr, lr=lr, weight_decay=0) if self.options.bUseSMPLX: #SMPL-X model #No change is required for HMR training. SMPL-X ignores hand and other parts. #SMPL uses 23 joints, while SMPL-X uses 21 joints, automatically ignoring the last two joints of SMPL self.smpl = SMPLX(config.SMPL_MODEL_DIR, batch_size=self.options.batch_size, create_transl=False).to(self.device) else: #Original SMPL self.smpl = SMPL(config.SMPL_MODEL_DIR, batch_size=self.options.batch_size, create_transl=False).to(self.device) # Per-vertex loss on the shape self.criterion_shape = nn.L1Loss().to(self.device) # Keypoint (2D and 3D) loss # No reduction because confidence weighting needs to be applied self.criterion_keypoints = nn.MSELoss(reduction='none').to(self.device) # Loss for SMPL parameter regression self.criterion_regr = nn.MSELoss().to(self.device) self.models_dict = {'model': self.model} self.optimizers_dict = {'optimizer': self.optimizer} self.focal_length = constants.FOCAL_LENGTH # Initialize SMPLify fitting module self.smplify = SMPLify(step_size=1e-2, batch_size=self.options.batch_size, num_iters=self.options.num_smplify_iters, focal_length=self.focal_length) if self.options.pretrained_checkpoint is not None: print(">>> Load Pretrained mode: {}".format( self.options.pretrained_checkpoint)) self.load_pretrained( checkpoint_file=self.options.pretrained_checkpoint) self.backupModel() #This should be called here after loading model if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") self.model = torch.nn.DataParallel(self.model) #Failed... # Load dictionary of fits self.fits_dict = FitsDict(self.options, self.train_ds) # Create renderer self.renderer = None # Renderer(focal_length=self.focal_length, img_res=self.options.img_res, faces=self.smpl.faces) #debug from torchvision.transforms import Normalize self.de_normalize_img = Normalize(mean=[ -constants.IMG_NORM_MEAN[0] / constants.IMG_NORM_STD[0], -constants.IMG_NORM_MEAN[1] / constants.IMG_NORM_STD[1], -constants.IMG_NORM_MEAN[2] / constants.IMG_NORM_STD[2] ], std=[ 1 / constants.IMG_NORM_STD[0], 1 / constants.IMG_NORM_STD[1], 1 / constants.IMG_NORM_STD[2] ])
def __init__(self, body_regressor_checkpoint, hand_regressor_checkpoint, smpl_dir, device=torch.device('cuda'), use_smplx=True): super().__init__('BodyMocap') self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') print("Loading Body Pose Estimator") self.__load_body_estimator() self.visualizer = Visualizer('opengl') self.frame_id = 0 #count frames parser = argparse.ArgumentParser() parser.add_argument("--rot90", default=False, type= bool, help="clockwise rotate 90 degrees") #parser.add_argument("--camera_topic", default="/logi_c922_2/image_rect_color", help="choose a topic as input image") parser.add_argument("--body_only", default=False, type= bool, help="detect only body and save its result") parser.add_argument("--result_path", default="/home/student/result/", help="choose a topic as input image") parser.add_argument("--save_result", default=False, help="save result or not") args = parser.parse_args() self.rot90 = args.rot90 #self.camera_topic = args.camera_topic self.body_only = args.body_only self.result_path = args.result_path self.save_result = args.save_result self.load = [0,0] self.angle_leg = 0 self.angle_trunk = 0 self.start = 0 self.angles = np.empty((1,20),dtype = float) self.body_side = np.empty((25,3),dtype = float) # Load parametric model (SMPLX or SMPL) if use_smplx: smplModelPath = smpl_dir + '/SMPLX_NEUTRAL.pkl' self.smpl = SMPLX(smpl_dir, batch_size=1, num_betas = 10, use_pca = False, create_transl=False).to(self.device) self.use_smplx = True else: smplModelPath = smpl_dir + '/basicModel_neutral_lbs_10_207_0_v1.0.0.pkl' self.smpl = SMPL(smplModelPath, batch_size=1, create_transl=False).to(self.device) self.use_smplx = False #Load pre-trained neural network SMPL_MEAN_PARAMS = '/home/student/frankmocap/extra_data/body_module/data_from_spin/smpl_mean_params.npz' self.model_regressor = hmr(SMPL_MEAN_PARAMS).to(self.device) body_checkpoint = torch.load(body_regressor_checkpoint) self.model_regressor.load_state_dict(body_checkpoint['model'], strict=False) self.model_regressor.eval() #hand module init transform_list = [ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] self.normalize_transform = transforms.Compose(transform_list) #Load Hand network self.opt = TestOptions().parse([]) #Default options self.opt.single_branch = True self.opt.main_encoder = "resnet50" # self.opt.data_root = "/home/hjoo/dropbox/hand_yu/data/" self.opt.model_root = "/home/student/frankmocap/extra_data" self.opt.smplx_model_file = os.path.join(smpl_dir,'SMPLX_NEUTRAL.pkl') self.opt.batchSize = 1 self.opt.phase = "test" self.opt.nThreads = 0 self.opt.which_epoch = -1 self.opt.checkpoint_path = hand_regressor_checkpoint self.opt.serial_batches = True # no shuffle self.opt.no_flip = True # no flip self.opt.process_rank = -1 # self.opt.which_epoch = str(epoch) self.hand_model_regressor = H3DWModel(self.opt) # if there is no specified checkpoint, then skip assert self.hand_model_regressor.success_load, "Specificed checkpoints does not exists: {}".format(self.opt.checkpoint_path) self.hand_model_regressor.eval() self.hand_bbox_detector = HandBboxDetector('third_view', self.device) #subscriber and publisher initialization #input subscriber self.br = CvBridge() self.subscription_img = self.create_subscription(Image, '/side_img', self.callback_side,10) self.subscription_img = self.create_subscription(Image, '/front_img', self.callback_front,10) #output publisher self.publisher_pose = self.create_publisher(Image,'/pose',10) #images with keypoints annotation #self.publisher_keypoints = self.create_publisher(Float32MultiArray,'/keypoints',10) #keypoints coordinates self.publisher_risk = self.create_publisher(Int64,'/risk',10) #risk level self.publisher_angles = self.create_publisher(Float32MultiArray,'/angles',10)