Exemplo n.º 1
0
    def __init__(self, controller):
        """Initialize object.

        First part of two-part initialization.
        Put initialization code here that's very unlikely to fail.
        """
        self.controller = controller
        self.state = None
        self.state_src = None

        # State maop of the US.
        self.stateusmap = figure(
            title="""Electoral college votes by time and geography""",
            x_axis_location=None,
            y_axis_location=None,
            x_axis_type="""linear""",
            sizing_mode="""stretch_both""")
        self.stateusmap.xgrid.visible = False
        self.stateusmap.ygrid.visible = False

        # The date for charting.
        self.choosethedatefordisplay = DateSlider(
            title="""Choose the date for display""",
            start="""2018-11-13T20:20:39+00:00""",
            end="""2025-11-13T20:20:39+00:00""",
            step=24 * 60 * 60 * 1000,
            value="""2018-11-13T20:20:39+00:00""",
            sizing_mode="stretch_width")

        # Layout the widgets
        row1 = row(children=[
            Spacer(width=10), self.choosethedatefordisplay,
            Spacer(width=10)
        ],
                   sizing_mode='stretch_width')
        self.layout = column(children=[
            self.stateusmap, row1,
            Spacer(height=75, sizing_mode='scale_width')
        ],
                             sizing_mode='stretch_both')
        self.panel = Panel(child=self.layout, title='Forecast by geography')
Exemplo n.º 2
0
disabled_slider = Slider(title="Disabled",
                         value=50,
                         start=0,
                         end=96,
                         step=5,
                         disabled=True)

range_slider = RangeSlider(title="Numerical range",
                           value=[30, 70],
                           start=0,
                           end=100,
                           step=0.5)

date_slider = DateSlider(title="Date",
                         value=date(2014, 1, 1),
                         start=date(2010, 1, 1),
                         end=date(2020, 1, 1),
                         step=1)

date_range_slider = DateRangeSlider(title="Date range",
                                    value=(date(2014, 1,
                                                1), date(2018, 12, 31)),
                                    start=date(2010, 1, 1),
                                    end=date(2020, 1, 1),
                                    step=1)

only_value_slider = Slider(value=50, start=0, end=96, step=5)

no_title_slider = Slider(title=None, value=50, start=0, end=96, step=5)

Exemplo n.º 3
0
# Set up data

#global:
param_choice = data['resolution2']
#
source = ColumnDataSource(data=dict(x=data['scene_lat'] , y=data['scene_lon'], c=param_choice ))
plot.circle('x', 'y', color='c', source=source, line_width=3, alpha=0.6)

# Set up widgets
text = TextInput(title="title", value='Daily Resolution')
print("You've made it this far, traveller!")

year_slider = Slider(title="Year", value=data['year'].min(), start=data['year'].min(), end=data['year'].max(), step=1)
month_slider = Slider(title="Month", value=data['yearmonth'].min(), start=data['yearmonth'].min(), end=data['yearmonth'].max(), step=1)
day_slider = DateSlider(title="Day", start=data['date'].min(), end=data['date'].max(), value=data['date'].min(), step=1)

#date = DateSlider(title="Day", start=data['date'].min(), end=data['date'].max(), value=data['date'].min(), step=1)
param_button_group = RadioButtonGroup(labels=["Resolution", "Potential Water", "Cloud Coverage", "Gelbstoff"], active=0)
time_button_group = RadioButtonGroup(labels=["Yearly", "Monthly", "Daily"], active=0)
# Set up callbacks

#global:
chosen_slider = year_slider
chosen_timeline = data['year']
inputs = widgetbox(chosen_slider, param_button_group, time_button_group) #(text, )
#

def update_title(attrname, old, new):
    plot.title.text = text.value
Exemplo n.º 4
0
# Initialize interactive widgets before calling first update
#############################
update()

date_selector = DateRangeSlider(title="Select Timeframe",
                                end=VARS['global_end'],
                                start=VARS['global_start'],
                                step=1,
                                value=(
                                    VARS['time_range'][0],
                                    VARS['time_range'][1],
                                ))
single_day_selector = DateSlider(
    title="Select Day",
    end=VARS['global_end'],
    start=VARS['global_start'],
    step=1,
    value=VARS['selected_day'],
)

date_selector.on_change('value', update_time_range)
single_day_selector.on_change('value', update_highlighted_day)

##################################################################
# Bokeh Plots
##################################################################
TOOLS = "pan,wheel_zoom,box_select,lasso_select,reset"

##########
# Stage Time Series
##########
Exemplo n.º 5
0
radio_button_group = RadioButtonGroup(labels=["Option 1", "Option 2", "Option 3"], active=0)

text_input = TextInput(placeholder="Enter value ...")

completions = ["aaa", "aab", "aac", "baa", "caa"]
autocomplete_input = AutocompleteInput(placeholder="Enter value (auto-complete) ...", completions=completions)

select = Select(options=["Option 1", "Option 2", "Option 3"])

multi_select = MultiSelect(options=["Option %d" % (i+1) for i in range(16)], size=6)

slider = Slider(value=10, start=0, end=100, step=0.5)

range_slider = RangeSlider(value=[10, 90], start=0, end=100, step=0.5)

date_slider = DateSlider(value=date(2016, 1, 1), start=date(2015, 1, 1), end=date(2017, 12, 31))

date_range_slider = DateRangeSlider(value=(date(2016, 1, 1), date(2016, 12, 31)), start=date(2015, 1, 1), end=date(2017, 12, 31))

spinner = Spinner(value=100)

color_picker = ColorPicker(color="red", title="Choose color:")

date_picker = DatePicker(value=date(2017, 8, 1))

paragraph = Paragraph(text="some text")

div = Div(text="some <b>text</b>")

pre_text = PreText(text="some text")
Exemplo n.º 6
0
                  'transform': mapper
              },
              line_color='white',
              source=source)
    p.add_layout(color_bar, 'right')
    return p


palette.reverse()
plot = make_plot(LinearColorMapper(palette=palette, low=-2, high=15))

# Set up widgets
#text=TextInput(title="Title", value='my sine wave')
Date = DateSlider(title="Date",
                  start=start_date,
                  end=end_date,
                  value=start_date,
                  step=1)

# Set up callbacks
# =============================================================================
# def update_title(attrname, old, new):
#     plot.title.text = text.value
#
# text.on_change('value', update_title)
# =============================================================================
# =============================================================================
# group=gdf.groupby('county')
# sample=group.agg({'cofiltered':'mean'}).reset_index(drop=False)
# lnd_bor.join(sample.set_index('county'),on='name')
#
Exemplo n.º 7
0
    var closest = stats[dates.indexOf(dates.reduce(function(prev, curr) {
        return (Math.abs(curr - len) < Math.abs(prev - len) ? curr : prev);
    }))]
    plots[0].x_range.end=len;
    plots[0].y_range.end=closest;
    plots[0].y_range.start=0;
    plots[1].x_range.end=len;
    plots[1].y_range.end=closest;
    plots[1].y_range.start=1;
''')
#changes x range to be (0,slider_value)
#changes y range to be (0 or 1, the closest stastics value to slider)

slider = DateSlider(start=min(dates),
                    end=max(dates),
                    value=max(dates),
                    step=1,
                    title='Time')
slider.js_on_change('value', callback)

loopchange = CustomJS(args=dict(slider=slider,
                                endlen=max(dates),
                                minlen=min(dates)),
                      code='''
    function sleep(ms) {
       return new Promise(resolve => setTimeout(resolve, ms));
    }
    async function run() {
        var len = slider.value;
        var loopcount=0;
        while (cb_obj.active){
Exemplo n.º 8
0
def bokeh_spacetimepop(
        frm,
        geometry,
        title = '',
        preamble = '',
        varNames = None,
        varNotes = dict(),
        pw = 700,
        ph = 700,
        xZones = dict(),
        ):

    import numpy as np

    import pandas as pd
    df = pd.DataFrame
    idx = pd.IndexSlice
    import geopandas as gpd
    gdf = gpd.GeoDataFrame

    from bokeh.models import ColumnDataSource, HoverTool, Legend, LegendItem, CDSView, IndexFilter
    from bokeh.plotting import figure, show
    from bokeh.io import output_notebook

    #     frm = frm.reset_index().pivot(index = frm.index.names[0], columns = frm.index.names[1])
    frm = frm.copy()
    frm = frm.sort_index()
    #     geometry = geometry.copy()

    from bokeh.models import Div

    title = f'<h1>{title}</h1>'
    title = Div(
        text = title,
        width = pw,
        )
    preamble = Div(
        text = preamble,
        width = pw,
        )

    if varNames is None:
        varNames = frm.columns.sort_values()
        varMetaName = varNames.name
    else:
        varMetaName = 'variable'
    varNames = list(varNames)
    seriesNames = frm.index.levels[1].sort_values()
    seriesMetaName = seriesNames.name
    seriesNames = list(seriesNames)
    dates = [str(int(round(i.to_numpy().astype(int) / 1e6))) for i in frm.index.levels[0]]
    frm.index = frm.index.set_levels(dates, level = 0)
    defaultVar = varNames[0]
    defaultDate = dates[-1]
    pivotFrm = frm.reset_index() \
        .pivot(index = frm.index.names[0], columns = frm.index.names[1]) \
        .sort_index()

    defaultVar = varNames[0]
    defaultDate = dates[-1]

    for key in varNames:
        if not key in varNotes:
            varNotes[key] = ''
        else:
            varNotes[key] = f'<i>{varNotes[key]}</i>'

    varNote = Div(
        text = varNotes[defaultVar],
        width = pw - 120,
        )

    lineSources = {
        key: ColumnDataSource(pivotFrm[key])
            for key in pivotFrm.columns.levels[0]
        }
    lineSource = ColumnDataSource(pivotFrm[defaultVar])
    lineSource.name = defaultVar

    barSources = dict()
    for varName in varNames:
        for index, date in zip(sorted(pivotFrm.index), dates):
            series = pivotFrm.loc[index, varName]
            subFrm = df(dict(
                name = series.index,
                value = series.values,
                height = abs(series.values),
                offset = series.values / 2.
                ))
            barSources[varName + '_' + date] = ColumnDataSource(subFrm)
    barSource = ColumnDataSource(barSources[defaultVar + '_' + defaultDate].data)
    barSource.name = ', '.join([str(defaultVar), str(defaultDate)])

    bounds = geometry.bounds
    minx = np.min(bounds['minx'])
    maxx = np.max(bounds['maxx'])
    miny = np.min(bounds['miny'])
    maxy = np.max(bounds['maxy'])
    aspect = (maxx - minx) / (maxy - miny)
    from shapely.geometry import Polygon
    import itertools
    corners = list(itertools.product(geometry.total_bounds[::2], geometry.total_bounds[1::2]))
    allPoly = Polygon([corners[0], corners[1], corners[3], corners[2]])
    allPoly = allPoly.centroid.buffer(np.sqrt(allPoly.area) / 1e6)
    for name in frm.index.levels[1]:
        if not name in geometry.index:
            geometry[name] = allPoly
    geometry = geometry.simplify(np.sqrt(geometry.area).min() * 10. ** 3.5)
    geoFrm = frm.reset_index().pivot(index = frm.index.names[1], columns = frm.index.names[0])
    geoFrm.columns = geoFrm.columns.map('_'.join).str.strip('_')
    geoFrm['geometry'] = geometry
    geoFrm = gdf(geoFrm)
    from bokeh.models import GeoJSONDataSource
    geoJSON = geoFrm.reset_index().to_json()
    geoSource = GeoJSONDataSource(geojson = geoJSON)
    mins = {n: frm[n].min() for n in varNames}
    maxs = {n: frm[n].max() for n in varNames}

    xName = frm.index.names[0]

    lineFig = figure(
        x_axis_type = 'datetime',
        y_range = (mins[defaultVar], maxs[defaultVar]),
        plot_height = int((ph - 100) * 1. / 3.),
        plot_width = pw,
        toolbar_location = 'left',
        tools = 'save, xpan, box_zoom, reset, xwheel_zoom',
        active_scroll = 'auto',
    #         title = title,
        )

    barFig = figure(
        x_range = seriesNames,
        plot_height = int((ph - 100) * 1. / 2.),
        plot_width = pw,
    #         title = "Scores on my birthday",
        toolbar_location = None,
        tools = ""
        )
    barFig.xgrid.grid_line_color = None
    barFig.xaxis.major_label_orientation = 'vertical'

    mapFig = figure(
        plot_width = pw - 20,
        plot_height = int(round((pw - 20) / aspect)),
        toolbar_location = 'right',
        tools = 'pan, wheel_zoom, reset',
        background_fill_color = "lightgrey"
        )
    mapFig.xgrid.grid_line_color = None
    mapFig.ygrid.grid_line_color = None

    from matplotlib.pyplot import get_cmap
    from matplotlib.colors import rgb2hex
    cmap = get_cmap('nipy_spectral')
    cs = [rgb2hex(cmap(i / len(seriesNames), alpha = 0.5)) for i in range(len(seriesNames))]

    lines = []

    for seriesName, colour in zip(seriesNames, cs):

        line = lineFig.line(
            xName,
            seriesName,
            source = lineSource,
            color = colour,
            alpha = 0.8,
            muted_color = 'gray',
            muted_alpha = 0.3,
            muted = True,
            line_width = 2,
    #             legend_label = seriesName,
            )

        from bokeh.models import HoverTool
        lineFig.add_tools(HoverTool(
            renderers = [
                line,
                ],
            tooltips = [
                (seriesMetaName.capitalize(), seriesName),
                (xName.capitalize(), f'@{xName}' + '{%Y-%m-%d}'),
                ('Value', f'@{{{seriesName}}}'),
                ],
            formatters = {
                f'@{xName}': 'datetime',
                seriesName: 'numeral',
                },
            toggleable = False
            ))

        lines.append(line)

    bars = []
    for i, (seriesName, colour) in enumerate(zip(seriesNames, cs)):
        view = CDSView(source = barSource, filters = [IndexFilter([i,]),])
        bar = barFig.rect(
            source = barSource,
            view = view,
            x = 'name',
            y = 'offset',
            height = 'height',
            width = 0.9,
            color = colour,
            muted_color = 'gray',
            muted_alpha = 0.3,
            muted = True,
            )
        bars.append(bar)

    from bokeh.palettes import Viridis256
    from bokeh.models import LinearColorMapper, ColorBar
    palette = Viridis256
    mapColourMapper = LinearColorMapper(
        palette = palette,
        low = frm.loc[idx[defaultDate, :], defaultVar].min(),
        high = frm.loc[idx[defaultDate, :], defaultVar].max(),
        )
    mapColourBar = ColorBar(
        color_mapper = mapColourMapper, 
        label_standoff = 8,
        width = 30,
        height = int(round(mapFig.plot_height * 0.9)),
        border_line_color = None,
        location = (0, 0), 
        orientation = 'vertical',
        )
    mapFig.add_layout(mapColourBar, 'left')

    patches = []
    for i, seriesName in enumerate(seriesNames):
        view = CDSView(source = geoSource, filters = [IndexFilter([i,]),])
        patch = mapFig.patches(
            'xs',
            'ys',
            source = geoSource,
            view = view,
            fill_color = dict(
                field = '_'.join([defaultVar, defaultDate]),
                transform = mapColourMapper,
                ),
            line_color = 'grey', 
            line_width = 0.25,
            fill_alpha = 0.,
            name = '_'.join([defaultVar, defaultDate])
            )
        patches.append(patch)

    from bokeh.models import HoverTool
    mapHover = HoverTool(
        renderers = patches,
        tooltips = [
            (seriesMetaName.capitalize(), f'@{seriesMetaName}'),
            ('Value', '@$name'),
            ]
        )
    mapFig.add_tools(mapHover)

    from bokeh.models import BoxAnnotation
    from bokeh.models import Label
    for name, zone in xZones.items():
        convD = lambda x: int(round(pd.Timestamp(x).to_numpy().astype(int) / 1e6))
        left, right = [None if val is None else convD(val) for val in zone]
        zone = BoxAnnotation(
            left = left,
            right = right,
            fill_alpha = 0.1,
            fill_color = 'gray',
            )
        zoneLabel = Label(
            text = name + ' (end)' if left is None else name,
            text_font_size = '8pt',
            x = right if left is None else left,
            y = 10,
            x_units = 'data',
            y_units = 'screen',
            angle = -90 if left is None else 90,
            angle_units = 'deg',
            x_offset = -10 if left is None else 10,
            y_offset = 5 * (len(name) + 6) if left is None else 0
            )
        lineFig.add_layout(zone)
        lineFig.add_layout(zoneLabel)

    from bokeh.models import Span
    span = Span(
        location = int(defaultDate),
        dimension = 'height',
        line_color = 'red',
    #         line_dash = 'dashed',
        line_width = 1
        )
    lineFig.add_layout(span)

    from bokeh.models.widgets import DateSlider
    slider = DateSlider(
        title = 'Date',
        start = int(dates[0]),
        end = int(dates[-1]),
        step = int(8.64 * 1e7), # days
        value = int(defaultDate),
        width = pw - 60,
        align = 'end'
        )

    from bokeh.models.widgets import Select
    select = Select(
        title = "Choose data:",
        options = varNames,
        value = defaultVar,
        width = 100,
        )

    from bokeh.models import CheckboxGroup
    checkboxes = CheckboxGroup(
        labels = seriesNames,
        active = [],
        )
    checkboxAll = CheckboxGroup(
        labels = ['All',],
        active = [],
        )

    from bokeh.models import CustomJS
    callback = CustomJS(
        args = dict(
            y_range = lineFig.y_range,
            lineSources = lineSources,
            lineSource = lineSource,
            barSources = barSources,
            barSource = barSource,
            bars = bars,
            lines = lines,
            patches = patches,
            select = select,
            slider = slider,
            span = span,
            checkboxes = checkboxes,
            varNote = varNote,
            varNotes = varNotes,
            geoSource = geoSource,
            mapColourMapper = mapColourMapper,
            mins = mins,
            maxs = maxs,
            ),
        code = """
            lineSource.data = lineSources[select.value].data
            lineSource.name = select.value
            lineSource.change.emit()
            span.location = slider.value
            span.change.emit()
            y_range.setv({'start': mins[select.value], 'end': maxs[select.value]})
            varNote.text = varNotes[select.value]
            varNote.change.emit()
            const barChoice = select.value + '_' + slider.value
            barSource.data = barSources[barChoice].data
            barSource.name = select.value.toString() + ', ' + slider.value.toString()
            barSource.change.emit()
            for (let i = 0; i < lines.length; i++){
                let checked = checkboxes.active.includes(i)
                lines[i].muted = !(checked)
                bars[i].muted = !(checked)
                var alpha = checked ? 1 : 0;
                patches[i].glyph.fill_alpha = alpha
            }
            const newCol = select.value + '_' + slider.value
            for (let i = 0; i < lines.length; i++){
                patches[i].glyph.fill_color['field'] = newCol
                patches[i].name = newCol
            }
            mapColourMapper.low = mins[select.value]
            mapColourMapper.high = maxs[select.value]
            geoSource.change.emit()
            """,
        )

    allCheckCallback = CustomJS(
        args = dict(
            lines = lines,
            checkboxes = checkboxes,
            checkboxAll = checkboxAll,
            callback = callback
            ),
        code = """
            checkboxes.active.length = 0
            if (checkboxAll.active.length > 0) {
                let arr = []
                for (let i = 0; i < lines.length; i++){
                    arr.push(i)
                    }
                checkboxes.active.push(...arr)
            }
            checkboxes.change.emit()
            callback.execute()
            """
        )

    slider.js_on_change('value', callback)
    select.js_on_change('value', callback)
    checkboxes.js_on_change('active', callback)
    checkboxAll.js_on_change('active', allCheckCallback)

    from bokeh.layouts import column, row
    layout = column(
        title,
        preamble,
        row(select, varNote),
        row(column(lineFig, slider, barFig), column(checkboxes, checkboxAll)),
        mapFig
        )

    return layout
Exemplo n.º 9
0
def make_dateMap(frm, name, title, size = 600, nonVisKeys = {}):

    minx = np.min(frm.bounds['minx'])
    maxx = np.max(frm.bounds['maxx'])
    miny = np.min(frm.bounds['miny'])
    maxy = np.max(frm.bounds['maxy'])
    aspect = (maxx - minx) / (maxy - miny)

    ts = sorted(set([n.split('_')[-1] for n in frm.columns]))
    ts = [n for n in ts if n.isnumeric()]
    assert len(ts)
    ns = sorted(set([n.split('_')[0] for n in frm.columns]))
    ns = [n for n in ns if not n in [*nonVisKeys, 'geometry']]
    assert len(ns)

    defaultCol = '_'.join([ns[0], ts[-1]])

    indexName = frm.index.name

    mins = {n: frm[['_'.join([n, t]) for t in ts]].min().min() for n in ns}
    maxs = {n: frm[['_'.join([n, t]) for t in ts]].max().max() for n in ns}

    from bokeh.models import GeoJSONDataSource
    geoJSON = frm.reset_index().to_json()
    source = GeoJSONDataSource(geojson = geoJSON)

    from bokeh.io import output_file
    outFilename = name + '.html'
    outPath = os.path.join(dataDir, outFilename)
    if os.path.isfile(outPath):
        os.remove(outPath)
    output_file(outPath)

    from bokeh.plotting import figure
    fig = figure(
        title = title,
        plot_height = size,
        plot_width = int(round(size * aspect)) + 50, 
        toolbar_location = 'right',
        tools = 'pan, zoom_in, zoom_out, wheel_zoom, reset',
        background_fill_color = "lightgrey"
        )

    fig.xgrid.grid_line_color = None
    fig.ygrid.grid_line_color = None

    from bokeh.palettes import Viridis256
    from bokeh.models import LinearColorMapper, ColorBar
    palette = Viridis256
    colourMapper = LinearColorMapper(
        palette = palette,
        low = mins[ns[0]],
        high = maxs[ns[0]],
        )
    colourBar = ColorBar(
        color_mapper = colourMapper, 
        label_standoff = 8,
        width = 30,
        height = int(round(fig.plot_height * 0.9)),
        border_line_color = None,
        location = (0, 0), 
        orientation = 'vertical',
        )
    fig.add_layout(colourBar, 'left')

    patches = fig.patches(
        'xs',
        'ys',
        source = source,
        fill_color = dict(
            field = defaultCol,
            transform = colourMapper,
            ),
        line_color = 'grey', 
        line_width = 0.25,
        fill_alpha = 1,
        name = defaultCol
        )

    from bokeh.models.widgets import DateSlider as Slider
    slider = Slider(
        title = 'Date',
        start = int(ts[0]),
        end = int(ts[-1]),
        step = int(8.64 * 1e7), # days
        value = int(ts[-1]),
        width = fig.plot_width - 70
        )

    from bokeh.models.widgets import Select
    select = Select(
        title = "Dataset",
        options = ns,
        value = defaultCol.split('_')[0],
        width = 60
        )

    from bokeh.models import CustomJS
    callback = CustomJS(
        args = dict(
            patches = patches,
            source = source,
            slider = slider,
    #         key = 'stay', # <--- TESTING
            select = select,
            colourMapper = colourMapper,
            mins = mins,
            maxs = maxs,
            ),
        code = """
            const newCol = select.value + '_' + slider.value
            patches.glyph.fill_color['field'] = newCol
            patches.name = newCol
            colourMapper.low = mins[select.value]
            colourMapper.high = maxs[select.value]
            source.change.emit()
            """,
        )

    from bokeh.models import HoverTool
    tooltips = [
        ('Index', '@' + indexName),
        ('Value', '@$name')
        ]
    tooltips.extend([(k.capitalize(), '@' + k) for k in nonVisKeys])
    hover = HoverTool(
        renderers = [patches],
        tooltips = tooltips
        )
    fig.add_tools(hover)

    slider.js_on_change('value', callback)
    select.js_on_change('value', callback)

    from bokeh.layouts import column, row
    layout = column(fig, row(select, slider))

    from bokeh.io import show

    show(layout)
Exemplo n.º 10
0
    return {
        'selected': ColumnDataSource(data=selected),
        'unselected': ColumnDataSource(unselected)
    }


def update_plot():
    src = get_datasets(df)
    selected_data_source.data.update(src['selected'].data)
    unselected_data_source.data.update(src['unselected'].data)


df0 = pd.read_pickle(join(dirname(__file__), 'data', 'tremors.pkl'))
df = df0.sample(frac=0.1)

date_slider = DateSlider(start=df['date'].min(),
                         end=df['date'].max(),
                         step=100,
                         value=df['date'].min())
date_slider.on_change('value', lambda attr, old, new: update_plot())

slider_box = widgetbox(children=[date_slider], width=600)

datasets_init = get_datasets(df)  # get bokeh ColumnDataSource
selected_data_source = datasets_init['selected']
unselected_data_source = datasets_init['unselected']
p = make_plot(selected_data_source, unselected_data_source)

layout = layout(children=[[p], [slider_box]], sizing_mode='fixed')

curdoc().add_root(layout)
Exemplo n.º 11
0

# Define the callback function: update_plot
def update_plot(attr, old, new):
    day = datetime.utcfromtimestamp(date_slider.value //
                                    1000.0)  #date_slider.value   #slider.value
    #geosource = GeoJSONDataSource(geojson = json_data(day))
    new_data = json_data(day)
    geosource.geojson = new_data
    p.title.text = 'CovIndex, {:%d %b %Y}'.format(day)  #'CovIndex, %d' %day


date_slider = DateSlider(
    title="Date Range: ",
    start=date(2020, 3, 25),
    end=date(2020, 5, 14),
    value=date(2020, 3, 25),
    step=86400000
)  # https://discourse.bokeh.org/t/bokeh-dateslider-still-broken/2466

date_slider.on_change('value', update_plot)

# Make a column layout of widgetbox(slider) and plot, and add it to the current document
layout = column(p, column(date_slider))
curdoc().add_root(layout)

#Display plot inline in Jupyter notebook
output_notebook()

#Display plot
show(layout)
Exemplo n.º 12
0
def scatter(df):
    #global df1
    
    def make_dataset(df):
        return ColumnDataSource(df)
    
    def style(p):
        # Title 
        p.title.align = 'center'
        p.title.text_font_size = '20pt'
        p.title.text_font = 'serif'

        # Axis titles
        p.xaxis.axis_label_text_font_size = '14pt'
        p.xaxis.axis_label_text_font_style = 'bold'
        p.yaxis.axis_label_text_font_size = '14pt'
        p.yaxis.axis_label_text_font_style = 'bold'

        # Tick labels
        p.xaxis.major_label_text_font_size = '12pt'
        p.yaxis.major_label_text_font_size = '12pt'

        return p

    def make_plot(src):
        # Blank plot with correct labels
        p = figure(plot_width = 1000, plot_height = 600, title = 'Confirmed Cases vs Recovered Cases (Size of glyph = Confirmed Death)',
                  x_axis_label = 'Confirmed Cases', y_axis_label = 'Recovered Cases')
        
        
        
        p.circle('confirmed_cases', 'recovered_cases', source=src, fill_alpha=0.7, size='death1',
            hover_fill_color = 'purple', hover_fill_alpha = 0.7, color='color', legend_field = 'continent')

        hover = HoverTool(tooltips=[('As at', '@Date{%F}'),
                                    ('Country', '@Country'),
                                    ('Confirmed', '@confirm'),
                                    ('Recovered', '@recovered'),
                                    ('Death', '@death')],
                         formatters={'@Date': 'datetime'})

        p.add_tools(hover)
        
        p.legend.location = "center_right"
        
        p.legend.click_policy = 'hide'

        # Styling
        p = style(p)

        return p
    
    # Callback function
    def update(attr, old, new):
       
        continent_to_plot = [continent_selection.labels[i] for i in 
                             continent_selection.active]
        
        df1 = df.set_index(['continent'])
        df1 = df1.loc[continent_to_plot]
        
        a = day_slider.value_as_date
        date = pd.to_datetime(a)

        d = df1[df1['Date'] == date]
        new_src = make_dataset(d)


        src.data.update(new_src.data)
    
    def animate_update():
        day = day_slider.value_as_date + timedelta(days=1)
        
        if day>df['Date'].max():
            day = df['Date'].min()
        day_slider.value = day

    def animate():
        global callback_id
        if button.label == '► Play':
            button.label = '❚❚ Pause'
            callback_id = curdoc().add_periodic_callback(animate_update, 200)
        else:
            button.label = '► Play'
            curdoc().remove_periodic_callback(callback_id)
            
    callback_id = None
    
    button = Button(label='► Play', width=60)
    button.on_click(animate)

        
    value = list(df['continent'].unique())
    continent_selection = CheckboxGroup(labels=value, active = [0, 1])
    continent_selection.on_change('active', update)
    
    day_slider = DateSlider(title="Date: ", start=df['Date'].min(), end=df['Date'].max(),
                                   value=df['Date'].max(), step=1)
    
    day_slider.on_change('value', update)
    
    controls = row(continent_selection, day_slider, button)
    
    initial = [continent_selection.labels[i] for i in continent_selection.active]
    df1 = df.set_index(['continent'])
    df1 = df1.loc[initial]
    
    dat = df1['Date'].max()
    d = df1[df1['Date'] == dat]
    src = make_dataset(d)
    
    p = make_plot(src)
    
    layout = column([controls, p])
    
    tab = Panel(child = layout, title = 'Progression')
    
    return tab
Exemplo n.º 13
0
def third_tab_create(filterData):

    #def arima(date = dummy_date, house = dummy_house , data = dummy_data,trainDays = dummy_trainDays):
    def arima(date, state, data, trainDays):

        houseData = filterData.groupby(
            filterData[filterData['state'] == state]['time']).sum()
        houseData['time'] = houseData.index
        #houseData['time'] = pd.to_datetime(houseData['time'])
        #houseData = houseData[['car1','grid','solar','time','load']]
        houseData = houseData[['time', data]]

        #houseData = filterData[filterData['dataid'] == house][['time',data]]
        #houseData = houseData.sort_values('time', ascending = True)
        houseData = houseData.sort_index()
        #houseData.index = houseData['time']
        startDate = pd.to_datetime(date) + pd.DateOffset(days=-trainDays)
        endDate = pd.to_datetime(date) + pd.DateOffset(days=1)
        daterange = [startDate, endDate]
        houseData = houseData.loc[daterange[0]:daterange[1], :]
        houseData[data] = houseData[data] * 60 * 15 / 3600  # kWh
        #houseData[data] = ( houseData[data] > .01 ) * houseData[data]
        weekdays = houseData[houseData.index.dayofweek < 5]
        weekends = houseData[houseData.index.dayofweek > 4]
        weekdayProfile = weekdays.groupby(weekdays['time'].dt.time).mean()
        weekendProfile = weekends.groupby(weekends['time'].dt.time).mean()
        houseData['detrend'] = houseData[data]

        for i in range(0, len(houseData)):
            if houseData['time'][i].dayofweek > 4:
                houseData['detrend'][i] = houseData['detrend'][
                    i] - weekendProfile[weekendProfile.index ==
                                        houseData['time'].dt.time[i]][data]
            else:
                houseData['detrend'][i] = houseData['detrend'][
                    i] - weekdayProfile[weekdayProfile.index ==
                                        houseData['time'].dt.time[i]][data]

        trainData = houseData['detrend']

        stepwise_model = auto_arima(trainData,
                                    start_p=1,
                                    start_q=1,
                                    max_p=3,
                                    max_q=3,
                                    m=7,
                                    start_P=0,
                                    seasonal=True,
                                    d=1,
                                    D=1,
                                    trace=True,
                                    error_action='ignore',
                                    suppress_warnings=True,
                                    stepwise=True)

        train = houseData[data].loc[startDate:date]
        test = pd.DataFrame(data=houseData.loc[date:endDate])
        test = test.drop(columns='detrend')
        future_forecast = stepwise_model.predict(n_periods=len(test))

        test['arima'] = future_forecast

        if pd.to_datetime(date).dayofweek > 4:
            aveProfile = weekendProfile
        else:
            aveProfile = weekdayProfile

        for i in range(0, len(test)):
            test['arima'][i] = test['arima'][i] + aveProfile[
                aveProfile.index == test['time'].dt.time[i]][data]

        test['error'] = abs(test[data] - test['arima'])
        #test['error'] = ( test['error'] > .03 ) * test['error']
        test = test.rename(columns={data: 'data'})
        test = test.drop(columns='time')

        #mape = 100 * sum( abs( test['error'] / test['data'] ) ) / len (test)
        mape = 100 * sum(abs(test['error'] / test['data'].max())) / len(test)

        print(stepwise_model.summary())

        return ColumnDataSource(test), mape

    def plot1_plot(src, mape):
        plot1 = figure(
            title='PV Generation + Battery(Discharge) forecasting of NY',
            x_axis_label='Time',
            y_axis_label='Generation [kWh]',
            x_axis_type="datetime")
        a = plot1.line('time', 'data', source=src, color='blue')
        b = plot1.line('time', 'arima', source=src, color='green')
        c = plot1.line('time', 'error', source=src, color='red')
        plot1.plot_width = 1300

        legend = Legend(items=[
            LegendItem(label="Raw Data", renderers=[a], index=0),
            LegendItem(label="Forecast", renderers=[b], index=1),
            LegendItem(label="Error", renderers=[c], index=2),
        ])

        plot1.add_layout(legend)

        plot1.legend.title = f'Abs Error = {round(mape1,3)}%'

        return plot1

    def update(attr, old, new):

        button.update(button_type='warning', label='Loading, please wait')

        def calculate():
            global home_to_plot, state_dict

            data_selector = data_type_selector.labels[
                data_type_selector.active]

            if data_selector == 'Net Load':
                data_to_plot = 'grid'
                plot1.yaxis.axis_label = 'Net Load [kWh]'

            if data_selector == 'Load + Battery(Charging)':
                data_to_plot = 'Load_+_Battery(Charging)'
                plot1.yaxis.axis_label = 'Load [kWh]'

            if data_selector == "Electric Vehicle Consumption":
                data_to_plot = 'car1'
                plot1.yaxis.axis_label = 'Consumption [kWh]'

            if data_selector == "PV Generation + Battery(Discharge)":
                data_to_plot = 'PV_+_Battery(Discharge)'
                plot1.yaxis.axis_label = 'Generation [kWh]'

            trainDays_to_plot = int(trainDays_input.value)

            new_home_to_plot = state_dict[community_selector.active]

            #new_home_to_plot = int(home_id_selector.value) ###

            plot1.title.text = f'{data_selector} forecasting of {new_home_to_plot} for date {date_slider.value}'

            if new_home_to_plot != home_to_plot:
                startDate = filterData[
                    filterData['state'] ==
                    new_home_to_plot]['time'].iloc[0].date()  ##change
                endDate = filterData[filterData['state'] ==
                                     new_home_to_plot]['time'].iloc[-1].date()
                middle = startDate + (endDate - startDate) / 1.5

                date_slider.start = startDate
                date_slider.end = endDate
                date_slider.value = middle
                date_to_plot = str(middle)

                print(startDate, endDate, middle)

            #daterange_raw = list(date_slider.value_as_datetime)
            #daterange_to_plot = [daterange_raw[0].strftime("%Y-%m-%d"), daterange_raw[1].strftime("%Y-%m-%d")]

            date_to_plot = date_slider.value

            new_src1, new_mape1 = arima(date=date_to_plot,
                                        state=new_home_to_plot,
                                        data=data_to_plot,
                                        trainDays=trainDays_to_plot)
            src1.data.update(new_src1.data)

            plot1.legend.title = f'Abs Error = {round(new_mape1,3)}%'

            button.update(button_type='success', label='Done')

            home_to_plot = new_home_to_plot

        curdoc().add_next_tick_callback(calculate)

    ## Initialize src and plot
    src1, mape1 = arima(date='2019-07-20',
                        state='NY',
                        data='PV_+_Battery(Discharge)',
                        trainDays=2)
    plot1 = plot1_plot(src1, mape1)

    ## Date Slider
    date_slider = DateSlider(title="Date: ",
                             start=date(2019, 5, 1),
                             end=date(2019, 8, 20),
                             value=date(2019, 7, 20),
                             step=1,
                             callback_policy='mouseup',
                             width=1300)
    date_slider.on_change("value_throttled", update)

    ## Text input
    trainDays_input = TextInput(value='2',
                                title='Training Days',
                                max_width=200,
                                max_height=50)
    trainDays_input.on_change('value', update)

    ## Data Options
    data_type_selector = RadioGroup(labels=[
        "PV Generation + Battery(Discharge)", "Load + Battery(Charging)",
        "Net Load", "Electric Vehicle Consumption"
    ],
                                    active=0)
    data_type_selector.on_change('active', update)

    ## Loading Status

    button = Button(label="Done", button_type="success")

    ## Home Selector
    #home_ids_available = np.unique(filterData['dataid'])

    #home_ids_available = list(map(str, home_ids_available))
    #home_id_selector = Dropdown(label="Home ID", button_type="warning", menu=home_ids_available, value="5679", max_width = 200)
    #home_id_selector.on_change('value',update)

    ## Agg house selection
    community_selector = RadioGroup(labels=list(np.unique(
        filterData['state'])),
                                    active=6,
                                    max_width=200)

    community_selector.on_change('active', update)

    row1 = row(
        plot1,
        column(data_type_selector,
               trainDays_input,
               community_selector,
               button,
               sizing_mode="scale_width"))
    row2 = row(date_slider)

    ## Layout
    layout = column(row1, row2)

    tab = Panel(child=layout, title='Forecasting')

    return tab
Exemplo n.º 14
0
class ForecastByGeography():
    """Shows US map and electoral college votes by state."""

    # %%
    def __init__(self, controller):
        """Initialize object.

        First part of two-part initialization.
        Put initialization code here that's very unlikely to fail.
        """
        self.controller = controller
        self.state = None
        self.state_src = None

        # State maop of the US.
        self.stateusmap = figure(
            title="""Electoral college votes by time and geography""",
            x_axis_location=None,
            y_axis_location=None,
            x_axis_type="""linear""",
            sizing_mode="""stretch_both""")
        self.stateusmap.xgrid.visible = False
        self.stateusmap.ygrid.visible = False

        # The date for charting.
        self.choosethedatefordisplay = DateSlider(
            title="""Choose the date for display""",
            start="""2018-11-13T20:20:39+00:00""",
            end="""2025-11-13T20:20:39+00:00""",
            step=24 * 60 * 60 * 1000,
            value="""2018-11-13T20:20:39+00:00""",
            sizing_mode="stretch_width")

        # Layout the widgets
        row1 = row(children=[
            Spacer(width=10), self.choosethedatefordisplay,
            Spacer(width=10)
        ],
                   sizing_mode='stretch_width')
        self.layout = column(children=[
            self.stateusmap, row1,
            Spacer(height=75, sizing_mode='scale_width')
        ],
                             sizing_mode='stretch_both')
        self.panel = Panel(child=self.layout, title='Forecast by geography')

    # %%
    def setup(self):
        """Set up object.

        Second part of two-part initialization.
        Place initialization code here that's more likely to fail.
        """
        # Load the files containing the state outlines and the Alaska/Hawaii
        # dividing lines
        _folder = os.path.dirname(os.path.realpath(__file__))
        _state_j = json.load(
            open(os.path.join(_folder, MAP_FOLDER, "state.json"), 'r'))
        _state = pd.DataFrame(_state_j['data'])
        _state = _state.sort_values('State abbreviation')
        _state['color'] = random.choices(brewer['RdBu'][11], k=_state.shape[0])
        _state['Democratic percentage'] = np.random.rand(_state.shape[0])
        _state['Republican percentage'] = np.random.rand(_state.shape[0])

        _frame_j = json.load(
            open(os.path.join(_folder, MAP_FOLDER, "frame.json"), 'r'))
        # Set up the sources
        self.state_src = ColumnDataSource(_state)
        frame_src = ColumnDataSource(
            data=dict(x=_frame_j['data']['x'], y=_frame_j['data']['y']))
        # Draw the states and the lines
        states = self.stateusmap.patches(xs='x',
                                         ys='y',
                                         source=self.state_src,
                                         fill_alpha=0.5,
                                         fill_color='color',
                                         line_color="gray",
                                         line_width=0.5)
        # The frame that separates AK, HI from the rest of the US
        self.stateusmap.multi_line(xs='x',
                                   ys='y',
                                   source=frame_src,
                                   line_color="gray",
                                   line_width=1.0)
        # Now set up the hover tool - so the state name is given
        hover = HoverTool(point_policy="follow_mouse",
                          renderers=[states],
                          tooltips=[
                              ("State name", "@{State name}"),
                              ("State abbreviation", "@{State abbreviation}"),
                              ("Democratic",
                               "@{Democratic percentage}{%0.1f}"),
                              ("Republican", "@{Republican percentage}{%0.1f}")
                          ])
        self.stateusmap.add_tools(hover)

        # Setup the callbacks.
        self.choosethedatefordisplay.on_change(
            "value", self.callback_choosethedatefordisplay)

    # %%
    def update(self, state):
        """Update view object."""
        # Make a copy of the state data and change the copy
        self.state = state.copy()
        self.state['color index'] = self.state['Spread D-R'] * 100
        self.state['color index'] = pd.cut(
            self.state['color index'],
            [-100, -10, -5, -2, -1, -0.5, 0.5, 1, 2, 5, 10, 100],
            labels=[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
        self.state['color'] =\
            self.state['color index'].map(
                {k: v for k, v in enumerate(brewer['RdBu'][11])})

        self.choosethedatefordisplay.start = self.state['Date'].min()
        self.choosethedatefordisplay.value = self.state['Date'].max()
        self.choosethedatefordisplay.end = self.state['Date'].max()

        self._update_chart(self.choosethedatefordisplay.value_as_datetime)

    # %%
    def _update_chart(self, date):
        """Update chart based on date."""
        _slice = self.state[self.state['Date'] == date]

        self.state_src.data['color'] = \
            _slice[['State abbreviation',
                    'color']].sort_values(
                        'State abbreviation')['color'].to_list()
        self.state_src.data['Democratic percentage'] = \
            _slice[['State abbreviation',
                    'Democratic proportion']].sort_values(
                        'State abbreviation')[
                            'Democratic proportion'].to_list()
        self.state_src.data['Republican percentage'] = \
            _slice[['State abbreviation',
                    'Republican proportion']].sort_values(
                        'State abbreviation')[
                            'Republican proportion'].to_list()

    # %%
    def callback_choosethedatefordisplay(self, attrname, old, new):
        """Execute callback method for self.choosethedatefordisplay."""
        # pylint: disable=W0613
        self._update_chart(self.choosethedatefordisplay.value_as_datetime)