def plot_happiness(self,
                       figsize=(600, 300),
                       colors=['darkgreen', 'darksalmon', 'darkred', 'gold']):

        df = self.happiness

        df['Dates'] = pd.to_datetime(df['Dates'])
        df.index = df['Dates']

        p = bkh.figure(x_axis_type='datetime',
                       plot_width=figsize[0],
                       plot_height=figsize[1])
        p.xaxis[0].formatter = bkm.DatetimeTickFormatter(days=['%d/%m'])
        p.xaxis.axis_label = 'Date'
        p.yaxis.axis_label = 'Survey Response 0-10 ("Not at all"-"Completely")'

        for i, s in enumerate([
                'Life satisfaction', 'Feeling worthwhile', 'Happiness',
                'Anxiety'
        ]):
            p.line(x=df.index.values,
                   y=df[s].values,
                   color=colors[0],
                   legend_label=s,
                   line_color=colors[i])

        p.legend.location = 'center_right'
        bkh.show(p)
    def plot_demand_discrepancy_bkh(self,
                                    figsize=(600, 300),
                                    plot_confidence=True):

        p = bkh.figure(plot_width=figsize[0],
                       plot_height=figsize[1],
                       x_axis_type='datetime')

        if plot_confidence:
            p.varea(x=self.grid_average.DATE[self.COVID_CUTOFF:],
                    y1=(self.Y_COVID.flatten() /
                        (self.Y_COVID_PREDICT_mean.flatten() +
                         self.Y_COVID_PREDICT_conf.flatten())).flatten(),
                    y2=(self.Y_COVID.flatten() /
                        (self.Y_COVID_PREDICT_mean.flatten() -
                         self.Y_COVID_PREDICT_conf.flatten())).flatten(),
                    alpha=0.2,
                    legend_label='Confidence')

        p.line(x=self.grid_average.DATE[self.COVID_CUTOFF:],
               y=np.ones(len(self.grid_average.DATE[self.COVID_CUTOFF:])),
               line_dash='dashed',
               color='black')
        p.line(x=self.grid_average.DATE[self.COVID_CUTOFF:],
               y=self.Y_COVID.flatten() / self.Y_COVID_PREDICT_mean.flatten(),
               legend_label='Mean')

        p.xaxis.axis_label = 'Date'
        p.xaxis[0].formatter = bkm.DatetimeTickFormatter(days=['%d/%m'])

        p.yaxis.axis_label = 'Net Demand (True) / Net Demand (Expected)'

        #bkh.output_notebook()
        bkh.show(p)
    def plot_domestic_issues(self,
                             figsize=(600, 300),
                             plot_bounds=True,
                             colors=['black', 'darkturquoise']):

        df = self.wellness

        df['Date'] = pd.to_datetime(df['Date'])
        df.index = df['Date']

        p = bkh.figure(x_axis_type='datetime',
                       plot_width=figsize[0],
                       plot_height=figsize[1])
        p.xaxis[0].formatter = bkm.DatetimeTickFormatter(days=['%d/%m'])
        p.xaxis.axis_label = 'Date'
        p.yaxis.axis_label = '% of actions delivered above normal levels'

        df['avg'] = df.mean(axis=1)
        p.line(x=df.index.values,
               y=df['avg'].values,
               color=colors[0],
               legend_label="Mean action on domestic issues")

        if plot_bounds:
            df['min'] = df.min(axis=1)
            df['max'] = df.max(axis=1)
            p.varea(x=df.index.values,
                    y1=df['min'].values,
                    y2=df['max'].values,
                    alpha=0.2,
                    color=colors[1],
                    legend_label='Max/min bounds')

        bkh.show(p)
Exemplo n.º 4
0
    def new_plot(self, title, units, *, line_width=None, precision=2):
        """
        Creates a blank line plot for with timestamps on the x-axis and
        a line for each data series on the y-axis.
        """

        plot = plotting.figure(title=title, tools=[])
        self.active_plot = plot
        self.plots.append(plot)
        self.colors = list(colors)
        self.units = units
        self.line_width = line_width or self.line_width

        plot.plot_width = self.width
        plot.plot_height = self.height
        plot.x_range = self.x_range

        datetime_tick_formats = {
            key: ["%a %b %d %H:%M:%S"]
            for key in ("seconds", "minsec", "minutes", "hourmin", "hours", "days")
        }
        plot.xaxis.formatter = models.DatetimeTickFormatter(**datetime_tick_formats)

        # https://bokeh.pydata.org/en/latest/docs/reference/models/formatters.html
        # plot.yaxis.formatter = models.NumeralTickFormatter(format="0a")
        plot.yaxis.formatter = models.NumeralTickFormatter(format="0,0.00 a")

        # With default precision level 2 (decimal places)
        # The units_formats = "@y{0,0.00}"
        # and the value would look like 1,234,567.89
        units_formats = f"@y{{0,0.{'0' * precision}}}"

        hover = models.HoverTool(
            # mode = vline would be nice to use,
            # but then separate hovers block each when lines are too close.
            # Would like a single hover box with time once, and a value per line
            # perhaps this will help acheive that:
            # https://stackoverflow.com/questions/29435200/bokeh-plotting-enable-tooltips-for-only-some-glyphs
            mode="mouse",  # other optins: vline
            line_policy="nearest",  # other optins: prev, next, nearest, interp, none
            tooltips=[
                ("Name", "$name"),
                ("Time", "@x{%a %m/%d %H:%M:%S}"),
                (self.units, units_formats),
            ],
            formatters={"x": "datetime", "Time": "datetime", "@x": "datetime"},
        )
        plot.add_tools(hover)

        plot.add_tools(models.BoxZoomTool())
        plot.add_tools(models.HelpTool())
        plot.add_tools(models.PanTool())
        plot.add_tools(models.WheelZoomTool(dimensions="width"))
        plot.toolbar.active_scroll = plot.select_one(models.WheelZoomTool)
        plot.add_tools(models.WheelZoomTool(dimensions="height"))
        plot.add_tools(models.UndoTool())
        plot.add_tools(models.RedoTool())
        plot.add_tools(models.ResetTool())
        plot.add_tools(models.SaveTool())
    def create_plot(self, counties):
        filename = self.create_filename()
        bp.output_file(filename, title=self.title)
        p = bp.figure(title=self.title,
                      x_axis_type="datetime",
                      width=1200,
                      height=700)
        legend_items = []
        for a, b in counties:
            if self.dublin == False and a == "Dublin":
                continue
            temp = b.copy()
            temp['StrDate'] = temp['TimeStamp'].apply(
                lambda x: x.strftime("%a, %b %d"))
            source = bp.ColumnDataSource(temp)
            leg = p.line("TimeStamp",
                         self.metric,
                         source=source,
                         line_width=2,
                         line_color=self.counties[a]['color'],
                         line_dash=self.counties[a]['dash'])
            legend_items.append((a, [leg]))

        legend = bm.Legend(items=legend_items,
                           location='top_right',
                           orientation='vertical',
                           border_line_color="black")

        p.add_layout(legend, 'right')

        p.legend.click_policy = "hide"
        p.legend.label_text_font_size = '12px'
        p.legend.label_text_font = 'Helvetica'
        p.legend.location = "top_left"
        p.legend.background_fill_color = 'slategray'
        p.legend.background_fill_alpha = 0.5

        tools = bm.HoverTool(
            tooltips=[("Date", "@StrDate"), (
                "County",
                "@CountyName"), ("Cases", "@ConfirmedCovidCases{0, 0}")])
        p.add_tools(tools)

        p.title.text_font = "Helvetica"
        p.title.text_font_size = "18px"

        p.background_fill_color = 'slategray'
        p.background_fill_alpha = 0.5

        p.xaxis.formatter = bm.DatetimeTickFormatter(months=["%b, %Y"],
                                                     days=["%b, %d"],
                                                     hours=["%H:%M"])

        bp.show(p)
def make_timeseries_plot() -> plotting.Figure:
    """Make an empty timeseries plot with all my customizations."""
    plot = plotting.figure(plot_width=900, plot_height=400, x_axis_type="datetime")
    plot.toolbar.active_drag = None
    plot.toolbar.active_scroll = None
    plot.toolbar.active_tap = None
    plot.toolbar.logo = None
    plot.toolbar_location = None
    plot.xaxis.formatter = models.DatetimeTickFormatter(
        hours=["%a %I%p"], days=["%a %I%p"]
    )
    return plot
Exemplo n.º 7
0
    def plot_daily_gas_bkh(self,
                           figsize=(650, 450),
                           plot_temperature=False,
                           colors=['black', 'darkturquoise']):
        p = bkh.figure(x_axis_type='datetime',
                       plot_width=figsize[0],
                       plot_height=figsize[1])

        p.line(x=self.energy_average['Date_'],
               y=32 * np.ones(len(self.energy_average)),
               line_dash='dashed',
               line_color=colors[0],
               legend_label='Typical domestic use (medium)')

        p.line(x=self.energy_average['Date_'],
               y=self.energy_average['gas_daily_total'],
               line_color=colors[0],
               legend_label='Mean of 115,000 UK households')

        p.xaxis.axis_label = 'Date'
        p.xaxis[0].formatter = bkm.DatetimeTickFormatter(days=['%d/%m'])

        p.y_range = bkm.Range1d(15, 70)
        p.yaxis.axis_label = 'Gas Consumption (Corrected) (kWh/ALP)'
        p.yaxis.axis_label_text_color = colors[0]

        if plot_temperature and self.weather_file:
            p.extra_y_ranges = {'temperature': bkm.Range1d(start=6, end=24)}

            p.line(x=self.energy_average['Date_'],
                   y=self.energy_average['temperature'],
                   line_color=colors[1],
                   legend_label='Temperature',
                   y_range_name='temperature')

            p.add_layout(
                bkm.LinearAxis(y_range_name='temperature',
                               axis_label='Mean Temperature (°C)',
                               axis_label_text_color=colors[1],
                               axis_line_color=colors[1],
                               major_label_text_color=colors[1],
                               major_tick_line_color=colors[1],
                               minor_tick_line_color=colors[1]), 'right')

            r = self.energy_average[['gas_daily_total', 'temperature'
                                     ]].corr(method='pearson').values[1, 0]
            p.legend.title = f'R = {r:.3f}'
            p.legend.location = 'top_left'
            p.legend.background_fill_alpha = 1.0

        #bkh.output_notebook()
        bkh.show(p)
Exemplo n.º 8
0
 def create_plot(self):
     plot = bokeh_plotting.figure(
         width=1000,
         height=500,
         title='Files per {} minutes'.format(self.interval),
         x_axis_label='Time (UTC)',
         x_axis_type='datetime',
         y_axis_label='Fileprocesslog Count',
     )
     plot.add_tools(self.hover)
     plot.xaxis.formatter = bokeh_models.DatetimeTickFormatter(
         minutes=["%H:%M"],
         hours=["%H:%M"],
         days=["%Y-%m-%d"],
     )
     plot.xaxis.major_label_orientation = pi / 4
     return plot
    def create_plot(self, data):
        filename = self.create_filename()
        bp.output_file(filename, title=self.title)
        p = bp.figure(title=self.title,
                      x_axis_type="datetime",
                      width=1200,
                      height=700)
        temp = data.copy()
        temp['StrDate'] = temp['TimeStamp'].apply(
            lambda x: x.strftime("%a, %b %d"))
        temp['Base'] = 0
        source = bp.ColumnDataSource(temp)
        p.varea("TimeStamp",
                "Daily",
                "Base",
                source=source,
                fill_color="pink",
                fill_alpha=0.5,
                legend_label="Daily Cases")

        p.line("TimeStamp",
               "Average",
               source=source,
               line_width=3,
               line_color="crimson",
               legend_label="Average Daily Cases")

        tools = bm.HoverTool(tooltips=[("Date", "@StrDate"),
                                       ("Daily Cases", "@Daily{0, 0}"),
                                       ("Average Cases", "@Average{0, 0}")],
                             mode="vline")
        p.add_tools(tools)

        p.legend.location = "top_left"
        p.legend.click_policy = "hide"

        p.title.text_font = "Helvetica"
        p.title.text_font_size = "18px"
        p.background_fill_color = 'slategray'
        # p.background_fill_alpha = 0.25
        p.xaxis.formatter = bm.DatetimeTickFormatter(months=["%b, %Y"],
                                                     days=["%b, %d"],
                                                     hours=["%H:%M"])

        bp.show(p)
Exemplo n.º 10
0
    def plot_timeline_bkh(self, figsize=(600, 300)):
        p = bkh.figure(x_axis_type='datetime',
                       plot_width=figsize[0],
                       plot_height=figsize[1])

        p.line(x=self.energy['Date'],
               y=self.energy['Electricity'],
               color='royalblue',
               legend_label='Electricity')
        p.line(x=self.energy['Date'],
               y=self.energy['Gas (corrected)'],
               color='orange',
               legend_label='Gas (corrected)')

        p.yaxis.axis_label = 'kWh'
        p.xaxis.axis_label = 'Date'

        p.xaxis[0].formatter = bkm.DatetimeTickFormatter(days=['%d/%m'])

        #bkh.output_notebook()
        bkh.show(p)
Exemplo n.º 11
0
def preparePlot():
    coinTypes = ["Maple", "Phil", "Kang", "Krueger"]
    colors = itertools.cycle(palettes)
    pl.output_file("graph.html", title="GoldWatch")

    p = pl.figure(title="Preisverlauf verschiedener Goldmünzen (basierend auf den Daten von https://www.exchange-ag.de/)",plot_width=1000, x_axis_type="datetime")
    datetime = md.DatetimeTickFormatter(days="%d/%m %H:%M", months="%d/%m %H:%M", hours="%d/%m %H:%M", minutes="%d/%m %H:%M")
    p.xaxis.formatter = datetime
    p.add_layout(md.Title(text="Zeitpunkt der Datenerfassung", align="center"), "below")
    p.add_layout(md.Title(text="Goldpreis in €", align="center"), "left")

    tooltip = [
        ("Münztyp", "$name"),
        ("Datum", "$x"),
        ("Wert in €", "$y{int}")
    ]
    formatters = { "@x": "datetime"}
    p.add_tools(md.HoverTool(tooltips=tooltip, formatters=formatters))
    for coin,color in zip(coinTypes,colors):
        data = db_handler.getData(coin)
        tmp = ()
        x = []
        yB = []
        yS = []
        for idx,elem in enumerate(data):
            nTime = time.ctime(elem[0])
            
            x.append(dt.datetime.fromtimestamp(elem[0]))
            yB.append(elem[1])
            yS.append(elem[2])
            # nTime = time.s
        print(x,yB)
        p.line(x, yB, legend_label=f"{coin} Buy", line_color=color, line_width=2, name=f"{coin} Buy")
        p.line(x, yS, legend_label=f"{coin} Sell", line_color=color, line_width=2, line_dash="dashed", name=f"{coin} Sell")

    pl.save(p)
Exemplo n.º 12
0
def style_figure(fig, legend_loc):
    fig.xaxis.formatter = bo_mo.DatetimeTickFormatter(days="%d/%m/%y")
    fig.legend.location = legend_loc
    fig.legend.click_policy = "hide"
    return fig
Exemplo n.º 13
0
# Fill with the data so far.
for line in temperature_file:
    line = line.strip().split(',')
    date, temp = line

    date = datetime.datetime.strptime(date, "%Y-%m-%d %H:%M:%S")
    temp = float(temp)

    new_line = {'time': [date], 'temp': [temp]}
    data.stream(new_line, rollover=100)

# Here, we make the figure and add the line glyph
p = bkp.figure(title='Streaming Data Demo',
               plot_width=1600,
               plot_height=450,
               x_axis_type='datetime')
p.line(x='time', y='temp', source=data)

# Make pretty axes
p.xaxis.formatter = bkm.DatetimeTickFormatter(
    hours=["%d %B %Y"],
    days=["%d %B %Y"],
    months=["%d %B %Y"],
    years=["%d %B %Y"],
)
p.xaxis.axis_label = 'Time'
p.yaxis.axis_label = 'Temperature'

# Add the figure, and the periodic callback.
bkp.curdoc().add_root(p)
bkp.curdoc().add_periodic_callback(monitor_file, 50)
Exemplo n.º 14
0
def make_power_graph(output_file: str, data: typ.List, window: int) -> None:
    """グラフ作成.

    Args:
        output_file: 出力ファイル名
        data: データ
        window: 移動平均のサンプル数
    """
    cols: typ.Tuple = ("time", "電力量", "電力", "電流R", "電流T", "MA電力", "MA電流R",
                       "MA電流T")
    datadict: typ.Dict = {}
    for col in cols:
        datadict[col] = []
    has_data: bool = len(data) > 0
    for row in data:
        datadict["time"].append(row["created_at"])
        datadict["電力量"].append(calc_電力量(row))
        datadict["電力"].append(row["瞬時電力"])
        datadict["電流R"].append(row["瞬時電流_r"] / 10.0)
        datadict["電流T"].append(row["瞬時電流_t"] / 10.0)
        datadict["MA電力"].append(statistics.mean(datadict["電力"][-window:]))
        datadict["MA電流T"].append(statistics.mean(datadict["電流T"][-window:]))
        datadict["MA電流R"].append(statistics.mean(datadict["電流R"][-window:]))

    source: bp.ColumnDataSource = bp.ColumnDataSource(datadict)
    tooltips: typ.List[typ.Tuple[str, str]] = [
        ("time", "@time{%F %T}"),
        ("積算電力量", "@{電力量}{0,0.0}"),
        ("瞬時電力", "@{電力}{0,0}"),
        ("瞬時電流(R相)", "@{電流R}{0,0.0}"),
        ("瞬時電流(T相)", "@{電流T}{0,0.0}"),
    ]
    hover_tool: bm.HoverTool = bm.HoverTool(tooltips=tooltips,
                                            formatters={"@time": "datetime"})

    bp.output_file(output_file, title="Power consumption")
    fig: bp.figure = bp.figure(
        title="Power consumption",
        x_axis_type="datetime",
        x_axis_label="時刻",
        y_axis_label="電力量[kWh]",
        sizing_mode="stretch_both",
    )
    fig.add_tools(hover_tool)
    fmt: typ.List[str] = ["%H:%M"]
    fig.xaxis.formatter = bm.DatetimeTickFormatter(hours=fmt,
                                                   hourmin=fmt,
                                                   minutes=fmt)
    if has_data:
        電力量_min: float = min(datadict["電力量"])
        電力量_max: float = max(datadict["電力量"])
        電力量_5p: float = (電力量_max - 電力量_min) * 0.05
        fig.y_range = bm.Range1d(電力量_min - 電力量_5p, 電力量_max + 電力量_5p)
    fig.extra_y_ranges["W"] = bm.Range1d(
        0,
        max(datadict["電力"]) * 1.05 if has_data else 0)
    fig.add_layout(bm.LinearAxis(y_range_name="W", axis_label="電力[W]"), "left")
    fig.extra_y_ranges["A"] = bm.Range1d(
        0,
        max(*datadict["電流R"], *datadict["電流T"]) * 1.05 if has_data else 0)
    fig.add_layout(bm.LinearAxis(y_range_name="A", axis_label="電流[A]"),
                   "right")

    fig.line("time",
             "電力量",
             legend_label="積算電力量",
             line_color="red",
             source=source)

    raw_data: typ.List = [
        ("電力", "W", "瞬時電力", "orange"),
        ("電流R", "A", "瞬時電流(R相)", "blue"),
        ("電流T", "A", "瞬時電流(T相)", "green"),
    ]
    for col, range_name, legend_label, color in raw_data:
        fig.line(
            "time",
            col,
            y_range_name=range_name,
            legend_label=legend_label,
            line_color=color,
            line_alpha=0.8,
            source=source,
        ).visible = False

    ma_data: typ.List = [
        ("MA電力", "W", "瞬時電力(移動平均)", "orange"),
        ("MA電流R", "A", "瞬時電流(R相)(移動平均)", "blue"),
        ("MA電流T", "A", "瞬時電流(T相)(移動平均)", "green"),
    ]
    for col, range_name, legend_label, color in ma_data:
        fig.line(
            "time",
            col,
            y_range_name=range_name,
            legend_label=legend_label,
            line_color=color,
            line_width=2,
            line_alpha=0.8,
            line_dash="dotted",
            source=source,
        )

    fig.legend.click_policy = "hide"
    fig.legend.location = "top_left"

    bp.save(fig)
Exemplo n.º 15
0
def make_temp_graph(output_file: str, temp_data: typ.List, co2_data: typ.List,
                    bme280_data: typ.List) -> None:
    """グラフ作成.

    Args:
        output_file: 出力ファイル名
        temp_data: 温度データ
        co2_data: CO2データ
        bme280_data: BME280のデータ
    """
    tooltips: typ.List[typ.Tuple[str, str]] = [
        ("time", "@time{%F %T}"),
    ]
    df: pd.DataFrame
    deg_max: int = 0
    num_data: int = 0
    y_axis_label: str = "温度[℃]"
    if len(temp_data) > 0:
        num_data += 1
    if len(co2_data) > 0:
        num_data += 1
    if len(bme280_data) > 0:
        num_data += 1
    if len(temp_data) > 0:
        df1: pd.DataFrame = pd.DataFrame(temp_data,
                                         columns=list(temp_data[0].keys()))
        df1 = df1.rename(columns={"created_at": "time"})
        if num_data > 1:
            df1["time"] = df1["time"].apply(
                lambda x: x.replace(second=0, microsecond=0))
        df1["temp"] /= 1000
        df1 = df1[["time", "temp"]].drop_duplicates(subset="time")
        df = df1
        tooltips.append(("CPU温度", "@temp{0.0}"))
        deg_max = int(df["temp"].max()) + 10
    if len(co2_data) > 0:
        df2: pd.DataFrame = pd.DataFrame(co2_data,
                                         columns=list(co2_data[0].keys()))
        df2 = df2.rename(columns={"temp": "temp2", "created_at": "time"})
        if num_data > 1:
            df2["time"] = df2["time"].apply(
                lambda x: x.replace(second=0, microsecond=0))
        df2 = df2[["time", "co2", "temp2"]].drop_duplicates(subset="time")
        if len(temp_data) > 0:
            df = pd.merge(df1, df2, on="time", how="outer").sort_values("time")
        else:
            df = df2
        if len(bme280_data) == 0:
            tooltips.append(("気温", "@temp2"))
        tooltips.append(("CO₂", "@co2"))
        deg_max = max(deg_max, int(df["temp2"].max()) + 10)
    if len(bme280_data) > 0:
        df3: pd.DataFrame = pd.DataFrame(bme280_data,
                                         columns=list(bme280_data[0].keys()))
        df3 = df3.rename(columns={"temp": "temp3", "created_at": "time"})
        if num_data > 1:
            df3["time"] = df3["time"].apply(
                lambda x: x.replace(second=0, microsecond=0))
        df3 = df3[["time", "temp3", "pressure",
                   "humidity"]].drop_duplicates(subset="time")
        if num_data > 1:
            df = pd.merge(df, df3, on="time", how="outer").sort_values("time")
        else:
            df = df3
        tooltips.append(("気温", "@temp3{0.0}"))
        tooltips.append(("湿度", "@humidity{0.0}"))
        tooltips.append(("気圧", "@pressure{0,0.0}"))
        deg_max = max(deg_max,
                      int(df["temp3"].max()) + 10,
                      int(df["humidity"].max()) + 10)
        y_axis_label += "/湿度[%]"

    source: bp.ColumnDataSource = bp.ColumnDataSource(df)
    hover_tool: bm.HoverTool = bm.HoverTool(tooltips=tooltips,
                                            formatters={"@time": "datetime"})

    bp.output_file(output_file, title="Temperature")
    fig: bp.figure = bp.figure(
        title="Temperature",
        x_axis_type="datetime",
        x_axis_label="時刻",
        y_axis_label=y_axis_label,
        sizing_mode="stretch_both",
    )
    fig.add_tools(hover_tool)
    fmt: typ.List[str] = ["%H:%M"]
    fig.xaxis.formatter = bm.DatetimeTickFormatter(hours=fmt,
                                                   hourmin=fmt,
                                                   minutes=fmt)
    fig.y_range = bm.Range1d(0, deg_max)
    if len(temp_data) > 0:
        fig.line("time",
                 "temp",
                 legend_label="CPU温度",
                 line_color="red",
                 source=source)
    if len(co2_data) > 0:
        if len(bme280_data) == 0:
            fig.line("time",
                     "temp2",
                     legend_label="気温",
                     line_color="darkorange",
                     source=source)
        fig.extra_y_ranges["ppm"] = bm.Range1d(
            0, max(2000, df["co2"].max() * 1.05))
        fig.add_layout(bm.LinearAxis(y_range_name="ppm", axis_label="濃度[ppm]"),
                       "right")
        fig.line("time",
                 "co2",
                 legend_label="CO₂",
                 line_color="green",
                 y_range_name="ppm",
                 source=source)
    if len(bme280_data) > 0:
        fig.line("time",
                 "temp3",
                 legend_label="気温",
                 line_color="darkorange",
                 source=source)
        fig.line("time",
                 "humidity",
                 legend_label="湿度",
                 line_color="blue",
                 source=source)
        fig.extra_y_ranges["pressure"] = bm.Range1d(
            min(990, df["pressure"].min()), max(1020, df["pressure"].max()))
        fig.add_layout(
            bm.LinearAxis(y_range_name="pressure", axis_label="気圧[hPa]"),
            "right")
        fig.line("time",
                 "pressure",
                 legend_label="気圧",
                 line_color="deeppink",
                 y_range_name="pressure",
                 source=source)

    fig.legend.click_policy = "hide"
    fig.legend.location = "top_left"

    bp.save(fig)
Exemplo n.º 16
0
    def plot_all(self) -> plotting.Figure:
        """Creates plot containing all transations and balance over time.

        The plot will contain a line showing the balance over time, with
        scatter points to show the absolute value of each transation.

        Returns
        -------
        plotting.Figure
            Figure object with all midata transactions plotted.
        """
        balance_hover = models.HoverTool(
            names=["balance"],
            toggleable=False,
            tooltips=[
                ("Date", "@date{%d/%m/%Y}"),
                ("Balance (£)", "@balance{0,0.00}"),
            ],
            formatters={"@date": "datetime"},
        )
        amount_hover = models.HoverTool(
            names=["abs_amount"],
            toggleable=False,
            tooltips=[
                ("Date", "@date{%d/%m/%Y}"),
                ("Transaction (£)", "@amount{+0,0.00}"),
                ("Balance (£)", "@balance{+0,0.00}"),
                ("Merchant / Description", "@description"),
            ],
            formatters={"@date": "datetime"},
        )

        p = plotting.figure(
            title="All transactions",
            x_axis_label="Date",
            y_axis_label="Amount (£)",
            sizing_mode="stretch_both",
            tools=[
                "pan",
                "box_select",
                "xwheel_zoom",
                "reset",
                "save",
                balance_hover,
                amount_hover,
            ],
        )
        p.xaxis[0].formatter = models.DatetimeTickFormatter()
        p.y_range = models.DataRange1d(bounds=(0, 10000))
        epoch = dt.datetime.utcfromtimestamp(0)
        max_date = (dt.datetime.today() - epoch).total_seconds()
        min_date = max_date - (2 * 365 * 24 * 60 * 60)
        p.x_range = models.DataRange1d(bounds=(min_date * 1000,
                                               max_date * 1000))
        p.line(
            x="date",
            y="balance",
            source=self.source,
            legend_label="Balance",
            name="balance",
            line_width=2,
        )
        p.scatter(
            "date",
            "abs_amount",
            size=5,
            color="colour",
            name="abs_amount",
            source=self.source,
            legend_label="Absolute Transaction",
            fill_alpha=0.8,
        )

        p.legend.click_policy = "hide"
        return p