def index():
    streaming = True
    source = AjaxDataSource(data_url="http://localhost:5000/source_data",
                            polling_interval=100)
    source.data = get_data(time_slice)
    payload = encode_utf8(get_html(source))
    return payload
Exemplo n.º 2
0
def index(request):    
    plot = figure(responsive=True, tools=[],
               plot_width=500, plot_height=250,
               x_range=(-180, 180), y_range=(-90, 90))
    plot.toolbar_location = None
    plot.axis.visible = None
  
    source = AjaxDataSource(method='GET',
                            data_url='http://localhost:8000/view2d/data/',
                            polling_interval=1000)   
    source.data = dict(x=[], y=[]) # Workaround to initialize the plot
 
    img = load_image("static/images/earth.png") 
    plot.image_rgba(image=[img], x=[-180], y=[-90], dw=[360], dh=[180])
    plot.cross(source=source, x='x', y='y', 
               size=22, line_width=4, color='Orange') # CLU1

    script, div = components(plot, INLINE)
    js_resources = INLINE.render_js()
    css_resources = INLINE.render_css()
    context = {
        'bokeh_script' : script,
        'bokeh_div' : div,
        'js_resources' : js_resources,
        'css_resources' : css_resources
        } 
    return render(request, 'view2d/index.html', context)
Exemplo n.º 3
0
def plot():
    from bokeh.models import AjaxDataSource, CustomJS
    from bokeh.plotting import figure
    from bokeh.resources import CDN
    from bokeh.embed import components
    from bokeh.layouts import gridplot

    pid_adapter = CustomJS(code="""
    const result = {x:[], ref:[], v:[], e:[], rv:[]}
    const pts = cb_data.response.points

    for (let i=0; i<pts.length; i++) {
        result.x.push(pts[i][0])
        result.ref.push(pts[i][1])
        result.v.push(pts[i][2])
        result.e.push(pts[i][3])
        result.rv.push(pts[i][4])
    }
    return result
    """)

    pid_t_source = AjaxDataSource(data_url=f'{host}{url_for("data.get_pid_t_data")}', polling_interval=4500, adapter=pid_adapter, mode='append', max_size=500)
    pid_y_source = AjaxDataSource(data_url=f'{host}{url_for("data.get_pid_y_data")}', polling_interval=4500, adapter=pid_adapter, mode='append', max_size=1024)
    pid_p_source = AjaxDataSource(data_url=f'{host}{url_for("data.get_pid_p_data")}', polling_interval=800, adapter=pid_adapter, mode='append', max_size=1024)
    pid_r_source = AjaxDataSource(data_url=f'{host}{url_for("data.get_pid_r_data")}', polling_interval=800, adapter=pid_adapter, mode='append', max_size=1024)

    pid_t_plot = figure(title='dist', output_backend='webgl')
    pid_y_plot = figure(title='yaw', output_backend='webgl')
    pid_p_plot = figure(title='pitch', output_backend='webgl')
    pid_r_plot = figure(title='roll', output_backend='webgl')

    pid_t_plot.line('x', 'ref',  legend_label="ref", source=pid_t_source)
    pid_t_plot.line('x', 'v', color='orange',  legend_label="measured", source=pid_t_source)
    pid_t_plot.line('x', 'rv', color='red',  legend_label="pid out", source=pid_t_source)

    pid_y_plot.line('x', 'ref', source=pid_y_source)
    pid_y_plot.line('x', 'v', color='orange', source=pid_y_source)
    pid_y_plot.line('x', 'rv', color='red', source=pid_y_source)

    pid_p_plot.line('x', 'ref', source=pid_p_source)
    pid_p_plot.line('x', 'v', color='orange', source=pid_p_source)
    pid_p_plot.line('x', 'rv', color='red', source=pid_p_source)

    pid_r_plot.line('x', 'ref', source=pid_r_source)
    pid_r_plot.line('x', 'v', color='orange', source=pid_r_source)
    pid_r_plot.line('x', 'rv', color='red', source=pid_r_source)

    p = gridplot([[pid_t_plot, pid_y_plot], [pid_p_plot, pid_r_plot]])

    script, div = components(p)
    cdn_js = CDN.js_files
    return script, div, cdn_js
Exemplo n.º 4
0
def plot():
    from bokeh.models import AjaxDataSource, CustomJS
    from bokeh.plotting import figure
    from bokeh.resources import CDN
    from bokeh.embed import components
    from bokeh.layouts import gridplot

    sound_adapter = CustomJS(code="""
    const result = {x: [], y: []}
    const pts = cb_data.response.points
    for (let i=0; i<pts.length; i++) {
        result.x.push(pts[i][0])
        result.y.push(pts[i][1])
    }
    return result
    """)

    sound_source = AjaxDataSource(data_url=f'{host}{url_for("data.get_data")}',
                                  polling_interval=200,
                                  adapter=sound_adapter,
                                  mode='replace')

    sound_plot = figure(output_backend='webgl', y_range=(-(2**15), 2**15))
    sound_plot.line('x', 'y', source=sound_source)
    #sound_plot.xaxis.visible = False
    #sound_plot.yaxis.visible = False

    pred_adapter = CustomJS(code="""
    const result = {x:[], y: []}
    const pts = cb_data.response.points
    for (let i=0; i<pts.length; i++) {
        result.x.push(i)
        result.y.push(pts[i])
    }

    return result
    """)

    pred_source = AjaxDataSource(data_url=f'{host}{url_for("data.predict")}',
                                 polling_interval=100,
                                 adapter=pred_adapter,
                                 max_size=100,
                                 mode='replace')
    pred_plot = figure(output_backend="webgl", y_range=(0, 6), title='Proba')
    pred_plot.vbar(x='x', top='y', source=pred_source, color='blue', width=0.2)
    #pred_plot.xaxis.visible = False

    p = gridplot([[sound_plot, pred_plot]])

    script, div = components(p)
    cdn_js = CDN.js_files
    return script, div, cdn_js
Exemplo n.º 5
0
def makeTable(period, route):
    source = AjaxDataSource(data_url=request.url_root + route,
                            polling_interval=period,
                            method='GET',
                            mode='replace')

    source.data = dict(x=[], y=[])
    colx = TableColumn(field="x", title="Time")
    coly = TableColumn(field="y", title="Info")
    table = DataTable(source=source, columns=[colx, coly], height=300)

    script, div = components(table)

    return script, div
Exemplo n.º 6
0
def makePlot(period, route, title, line_color):
    source = AjaxDataSource(data_url=request.url_root + route,
                            polling_interval=period,
                            method='GET',
                            mode='replace')

    source.data = dict(x=[], y=[])

    plot = figure(plot_height=200, plot_width=800, title=title)

    plot.line('x', 'y', source=source, line_width=1, line_color=line_color)

    script, div = components(plot)

    return script, div
Exemplo n.º 7
0
def streaming():
    source = AjaxDataSource(data_url = request.url_root + 'ventra2/stream_result/data/', polling_interval = 1000, mode = 'append')
    #plot = figure(plot_width=300, plot_height=300)
    plot = figure(plot_height=300,sizing_mode='scale_width',x_axis_label='time (sec)', y_axis_label='count')
    plot.line('x', 'y', source = source, line_width = 4)
    script, div = components(plot)
    return render_template('seconds.html', script = script, div = div)
Exemplo n.º 8
0
def simple():
    source = AjaxDataSource(data_url="http://127.0.0.1:5000/data",
                            polling_interval=500,
                            mode='append',
                            max_size=30)
    source.data = dict(x=[], y=[])

    fig = figure(height=250, width=450)
    fig.circle('x', 'y', source=source)

    script, div = components(fig, INLINE)

    return jsonify(script=script,
                   div=div,
                   js_resources=INLINE.render_js(),
                   css_resources=INLINE.render_css())
Exemplo n.º 9
0
def ajax_data_sample():
    # setup AjaxDataSource with URL and polling interval
    source = AjaxDataSource(data_url='http://some.api.com/data',
                            polling_interval=100)
    p = figure()

    # use the AjaxDataSource just like a ColumnDataSource
    p.circle('x', 'y', source=source)
    show(p)
 def __init__(self,web_app_url):
     self.dataset = dict(genres=list(), count=list())
     self.__adapter = CustomJS(code="""
         const result = {genres: [], count: []}
         const {data} = cb_data.response
         result.genres = data.genres
         result.count = data.count
         return result
     """)
     self.__source = AjaxDataSource(data_url=web_app_url + '/MoviesPerGenreByUser',
                                    polling_interval=1000, adapter=self.__adapter)
Exemplo n.º 11
0
 def __init__(self, web_app_url):
     self.dataset = dict(users=list(), movies=list())
     self.__adapter = CustomJS(code="""
         const result = {users: [], movies: []}
         const {data} = cb_data.response
         result.users = data.users
         result.movies = data.movies
         return result
     """)
     self.__source = AjaxDataSource(data_url=web_app_url +
                                    '/MoviesWatchedByUsers',
                                    polling_interval=1000,
                                    adapter=self.__adapter)
 def __init__(self,web_app_url):
     self.dataset = dict(users=list(), movies=list())
     self.__adapter = CustomJS(code="""
         const result = {genre: [], movieId: [], title: [], watches: []}
         const {data} = cb_data.response
         result.genre = data.genre
         result.movieId = data.movieId
         result.title = data.title
         result.watches = data.watches
         return result
     """)
     self.__source = AjaxDataSource(data_url=web_app_url + '/TopWatchedMovies',
                                    polling_interval=1000, adapter=self.__adapter)
Exemplo n.º 13
0
def bokeh_image_ajax_data(request, bokeh_id):
    model = BokehVisual.objects.get(pk=bokeh_id)
    x_title = ""
    y_title = ""
    with open(os.path.join(model.path,'vis.dat'),'r') as f_in:
        titles = f_in.readline().split(',')
        x_title = titles[0].replace(' ','')
        y_title = titles[1].replace(' ','')

    plot = figure(title= model.title,
                  x_axis_label= x_title,
                  y_axis_label= y_title,
                  plot_width = model.width,
                  plot_height = model.height)

    source = AjaxDataSource(data_url="http://localhost:8000/bokeh/id/{}/data/".format(bokeh_id), content_type="json", method="GET", mode='replace')
    source.data = dict(x=[], y=[])

    if(model.img_type == 'line'):
        im = plot.line('x', 'y', source=source)
    if(model.img_type == 'circle'):
        im = plot.circle('x', 'y', source=source)

    callback = bokeh.models.CustomJS(args=dict(src=source,plt=plot), code="""
        var source = src;
        var plot = plt;
        start_redrawing = Date.now();
        for (var i = 0; i < 100000; i++) {
            plot.change.emit();
        }
        stop_redrawing = Date.now();
        statistic_redrawing();
    """)
    button = bokeh.models.Button(label="Start redrawing", callback=callback)
    layout = bokeh.models.layouts.Column(button, plot)

    response_dict = {'script':'', 'div':''}
    response_dict['script'], response_dict['div'] = components(layout)
    return JsonResponse({'get':response_dict})
Exemplo n.º 14
0
 def __init__(self,web_app_url):
     self.dataset = dict(users=list(), movies=list())
     self.__adapter = CustomJS(code="""
         const result = {ids: [], titles: [], avgs: [], watches:[]}
         const {data} = cb_data.response
         result.ids = data.ids
         result.titles = data.titles
         result.avgs = data.avgs
         result.watches = data.watches
         return result
     """)
     self.__source = AjaxDataSource(data_url=web_app_url + '/MoviesByTitle',
                                    polling_interval=1000, adapter=self.__adapter)
Exemplo n.º 15
0
def full_plot():
    # Set up to connect with self to get data
    source = AjaxDataSource(data_url='http://localhost:5000/api/data',
                            polling_interval=5000)

    # Make
    fig = figure(height=400, sizing_mode='stretch_width')

    # Make a simple plot
    fig.line('detect_time', 'void_frac', source=source)

    fig.xaxis.axis_label = 'Time (s)'
    fig.yaxis.axis_label = 'Void Fraction'

    return json.dumps(json_item(fig, "plot"))
Exemplo n.º 16
0
def plot_conceptDrift():
    # "append" mode is used to output the concatenated data
    source = AjaxDataSource(data_url='http://127.0.0.1:5000/ConceptDrift/',
                            polling_interval=1000,
                            mode='append')
    source.data = dict(t_stamp=[],
                       drift_num=[],
                       avg_loss=[],
                       loss_batch=[],
                       label_avg_loss=[],
                       label_loss_batch=[],
                       label_concept_drift=[])
    plot = figure(plot_height=300,
                  plot_width=500,
                  x_range=(0, 2000),
                  y_range=(0, 1.1))
    plot.line('t_stamp',
              'avg_loss',
              source=source,
              line_color="red",
              legend="label_avg_loss",
              line_width=2)
    plot.line('t_stamp',
              'loss_batch',
              source=source,
              line_color="blue",
              legend="label_loss_batch",
              line_width=2)
    plot.square('t_stamp',
                'drift_num',
                source=source,
                color="orange",
                legend="label_concept_drift",
                size=5)
    script, div = components(plot)
    return script, div
Exemplo n.º 17
0
    def index(self):
        """Render the plots"""
        plots = []

        # Build plot
        df = data('iris')
        # source = ColumnDataSource(df)
        source = AjaxDataSource(data_url='/api/bokeh?dataset=iris')

        species = df['species'].unique()
        fill_color = factor_cmap('species', palette=Category10[len(species)], factors=species)

        hover = HoverTool(tooltips=[
            ('index', '$index'),
            ('petalLength', '@petalLength{0.0}'),
            ('sepalLength', '@sepalLength{0.0}'),
            ('species', '@species'),
        ])

        p = figure(title='Iris Morphology', tools=[
                   hover, 'pan', 'wheel_zoom', 'reset'], active_scroll='wheel_zoom')

        p.xaxis.axis_label = 'petalLength'
        p.yaxis.axis_label = 'sepalLength'

        p.circle(x='petalLength', y='sepalLength', color=fill_color,
                 fill_alpha=0.5, size=10, source=source)

        # Save plot
        script, div = components(p)

        basename = 'iris_scatter'
        filename = '{}/{}.js'.format(PLOTS_DIR, basename)
        url = to_url(filename)

        file = open(filename, 'w')
        file.write(etree.fromstring(script).text)
        file.close()

        plots.append({
            'title': 'Scatterplot',
            'div': div,
            'script_url': url
        })

        return {
            'plots': plots
        }
Exemplo n.º 18
0
def make_plot_ajax():
    source = AjaxDataSource(data_url=request.url_root + 'bokeh/data',
                            polling_interval=100)

    p = figure(plot_height=300,
               plot_width=800,
               background_fill_color="lightgrey",
               title="Streaming Noisy sin(x) via Ajax")
    p.circle('x', 'y', source=source)
    p.circle('x', 'z', source=source, line_color="#3288bd", fill_color="white")

    p.x_range.follow = "end"
    p.x_range.follow_interval = 10
    script, div = components(p)

    return script, div
Exemplo n.º 19
0
def get_states_plot():
    source = AjaxDataSource(data={
        'STATE': [],
        'STNAME': [],
        'STUSAB': [],
        'TOT_POP': [],
        'TOT_MALE': [],
        'TOT_FEMALE': []
    },
                            data_url='/api/states/',
                            mode='replace',
                            method='GET')

    hover = HoverTool(tooltips=[
        ("State", "@STNAME"),
        ("Population", "@TOT_POP"),
        ("Female Population", "@TOT_FEMALE"),
        ("Male Population", "@TOT_MALE"),
    ])

    plot = figure(
        title='Population by State',
        plot_width=1200,
        plot_height=500,
        x_range=FactorRange(factors=get_state_abbreviations()),
        y_range=(0, 40000000),
        tools=[hover, 'tap', 'box_zoom', 'wheel_zoom', 'save', 'reset'])
    plot.toolbar.active_tap = 'auto'
    plot.xaxis.axis_label = 'State'
    plot.yaxis.axis_label = 'Population'
    plot.yaxis.formatter = NumeralTickFormatter(format="0a")
    plot.sizing_mode = 'scale_width'
    plot.vbar(bottom=0,
              top='TOT_POP',
              x='STUSAB',
              legend=None,
              width=0.5,
              source=source)

    url = "/counties/@STATE/"
    taptool = plot.select(type=TapTool)
    taptool.callback = OpenURL(url=url)

    return plot
Exemplo n.º 20
0
def page_a():
    global widgets

    init_widgets()

    # Create a dominate document, see https://github.com/Knio/dominate
    widgets.dominate_document()
    with widgets.dom_doc.body:  # add css elements here...
        style(raw("""body {background-color:powderblue;}"""))

    args, _redirect_page_metrics = widgets.process_req(request)
    if not args: return _redirect_page_metrics
    app.logger.info("{} : args {}".format(PAGE_URL, args))

    # redirect to another page based on widget data...
    _redirect = redirect_lookup_table(args.get("sel_nexturl", None))
    if _redirect: return redirect(_redirect)

    widgets.get("sel_nexturl").value = '99'

    doc_layout = layout(sizing_mode='scale_width')

    doc_layout.children.append(
        row(Div(text="""<h1>pywrapBokeh</h1><h2>Page A</h2>"""),
            Paragraph(text="""Play with all these widgets.""")))

    source = AjaxDataSource(
        data=dict(x=[], y=[]),
        adapter=CustomJS(code="return cb_data.response"),
        data_url="http://127.0.0.1:6800{}".format(PAGE_URL_GET_DATA),
        polling_interval=1000,
        mode='append')

    fig = figure(title="Streaming Example")
    fig.line('x', 'y', source=source)

    doc_layout.children.append(fig)

    doc_layout.children.append(row(widgets.get("sel_nexturl")))

    return widgets.render(doc_layout)
Exemplo n.º 21
0
def make_ajax_plot():
    adapter = CustomJS(code="""
        const result = {x: [], y: []}
        const pts = cb_data.response.points
        for (let i=0; i<pts.length; i++) {
            result.x.push(pts[i][0])
            result.y.push(pts[i][1])
        }
        return result
    """)
    source = AjaxDataSource(data_url=request.url_root + 'data/',
                            polling_interval=2000,
                            adapter=adapter)
    plot = figure(plot_height=300,
                  plot_width=800,
                  background_fill_color="lightgrey",
                  title="Streaming Noisy sin(x) via Ajax")
    plot.line('x', 'y', source=source)
    plot.x_range.follow = "end"
    plot.x_range.follow_interval = 10
    script, div = components(plot)
    return script, div
Exemplo n.º 22
0
def make_serverplot_ajax(caseid,
                         plotnames=[['liftOP1', 'liftOP2', 'blue']],
                         xlabel="LiftOp1",
                         ylabel="LiftOp2",
                         title="Lift"):

    source = AjaxDataSource(data_url=request.url_root[:-1] +
                            url_for('simulation.server_load', caseid=caseid),
                            polling_interval=1000)

    TOOLTIPS = [
        ("DesignID", "$index"),
        ("LiftOp1", "@liftOP1"),
        ("LiftOp2", "@liftOP2"),
        ("DragOp1", "@dragOP1"),
        ("DragOp2", "@dragOP2"),
        ("R", "@R"),
        ("beta", "@beta"),
        ("a", "@a"),
    ]

    p = figure(plot_height=300,
               plot_width=800,
               title=title,
               sizing_mode='scale_width',
               x_axis_label=xlabel,
               y_axis_label=ylabel,
               toolbar_location="above",
               tooltips=TOOLTIPS)

    for var in plotnames:
        p.circle(var[0], var[1], source=source, color=var[2])

    #p.x_range.follow = "end"

    return components(p)
Exemplo n.º 23
0
from bokeh.models import AjaxDataSource, CustomJS
from bokeh.plotting import figure, show

# Bokeh related code

adapter = CustomJS(code="""
    const result = {x: [], y: []}
    const pts = cb_data.response.points
    for (let i=0; i<pts.length; i++) {
        result.x.push(pts[i][0])
        result.y.push(pts[i][1])
    }
    return result
""")

source = AjaxDataSource(data_url='http://localhost:5555/data',
                        polling_interval=100, adapter=adapter)

p = figure(plot_height=300, plot_width=800, background_fill_color="lightgrey",
           title="Streaming Noisy sin(x) via Ajax")
p.circle('x', 'y', source=source)

p.x_range.follow = "end"
p.x_range.follow_interval = 10

# Flask related code

app = Flask(__name__)

def crossdomain(f):
    def wrapped_function(*args, **kwargs):
        resp = make_response(f(*args, **kwargs))
Exemplo n.º 24
0
r = StrictRedis(host='localhost', decode_responses=True)
p = r.pubsub()

# Main Bokeh Doc
doc = curdoc()

# Bitcoin price datasource
adapter = CustomJS(code="""
    var price = cb_data.response['data']['amount']
    var data = {x: [price], y: [0]}
    console.log(price)
    return data 
""")
btc_price_source = AjaxDataSource(
    data_url='https://api.coinbase.com/v2/prices/BTC-USD/spot',
    method='GET',
    polling_interval=3000,
    adapter=adapter)

# Controls
expirys = get_expirys()
expiry_keys, expiry_labels = zip(*expirys)
option_type_radiobutton = RadioButtonGroup(labels=['Calls', 'Puts'], active=1)
top_controls = row(option_type_radiobutton)

# load id_table so we can generate our DataColumnSources from it
# data_sources[<'put' | 'call'>][expiration][<'bid' | 'ask'>] retrieves a ColumnDataSource of scheme:
# {'x': <strike prices>, 'y': <IV%>}
data_sources = defaultdict(partial(defaultdict, dict))
id_table = load_id_table()
for option_type in ['call', 'put']:
Exemplo n.º 25
0
Arquivo: navia.py Projeto: d-que/navia
series_sele = {}
series_mz   = {}
series_mz4k = {}
series_mzsvg= {}
peak_mz   = {}
peak_mz4k   = {}
peak_mzsvg   = {}

series_names = ['Series {:d}'.format(i_series + 1) for i_series in range(n_series)]

for i_series in range(len(series_names)):
    series_cols[series_names[i_series]] = series_colours[i_series]
series_cols['Background']='#000000'

for i_series in series_names:
    series_data[i_series] = AjaxDataSource(data=dict(x_low=[], x_upp=[],  x_max=[],max_int=[], charge=[]))#
    series_sele[i_series] = AjaxDataSource(data=dict(i_low=[], i_upp=[], i_max=[]))
    series_mz[i_series]   = AjaxDataSource(data=dict(Intensity=[], mz=[]))
    series_mz4k[i_series] = AjaxDataSource(data=dict(Intensity=[], mz=[]))
    series_mzsvg[i_series]= AjaxDataSource(data=dict(Intensity=[], mz=[]))
    peak_mz[i_series]        = AjaxDataSource(data=dict(xs=[], ys=[]))
    peak_mz4k[i_series]      = AjaxDataSource(data=dict(xs=[], ys=[]))
    peak_mzsvg[i_series]     = AjaxDataSource(data=dict(xs=[], ys=[]))

series_masses = AjaxDataSource(data=dict(Series=[], Mass=[], Uncertainty=[], Colour=[]))
aser_data = AjaxDataSource(data=dict(x_low=[], x_upp=[],  x_max=[],max_int=[], charge=[]))
series_dict = AjaxDataSource(data=dict(series=series_names, names=series_names))

groel_data=pd.read_csv('Testdata/siyun_groel.txt', skiprows=10, delimiter='\t')
# groel_data.columns.values=[ 'Intensity']
groel_data.rename(columns={'1980.151514':'mz', '0.000000':'Intensity'}, inplace=True)
Exemplo n.º 26
0
	def build_components(self, is_closed):
		plot_dict = {}
		for table in self.tables:
			cp = table.__tablename__
			url =f"http://*****:*****@{timestamp}{%d %b %Y %l:%M:%S:%N %P}'),
					('rate', '@{rate}{%0.4f}'),
				],
				formatters={
					'@{timestamp}': 'datetime',
					'@{rate}': 'printf'
				}
			)
			plot.add_tools(hover_tool)
			callback = CustomJS(
				args={'line':line, 'source':source, 'cp':cp}, code="""
				var rates = source.data.rate;
				var first_val = rates[0];
				var last_val = rates[rates.length-1];
				var delta = Number.parseFloat(Math.abs(last_val-first_val)).toFixed(5);
				var increasing = first_val < last_val;
				if (increasing) {
					line.glyph.line_color = 'green';
				} else {
					line.glyph.line_color = 'red';
				}
						var card_class_dict = {
						true: {
						  "card_class":"card-text text-center font-weight-lighter text-success",
						  "new_color": "green",
						  "arrow": "▲"
						},
						false: {
						  "card_class":"card-text text-center font-weight-lighter text-danger",
						  "new_color": "red",
						  "arrow": "▼"
						  }
						}
						var formats = card_class_dict[increasing];

						$('#delta_'+cp)
						.removeClass()
						.addClass(
							  formats['card_class']
						)
						.html(
							formats["arrow"].concat(delta)
						);
						$('#current_'+cp).html(last_val);

				"""
			)
			source.js_on_change('change:data', callback)
			plot_dict[cp] = plot
		return components(plot_dict)
Exemplo n.º 27
0
        data = s.recv(1024)
    except socket.error as e:
        err = "Error receiving data 4: "+str(e)
        print(err)
        randomvar = alert(text="No data available", title="Error", button="OK")
        #s.close()
        continue
    connect = False
    break

nan = float('nan')
m = []
check2 = True
#lightsOn = False

source = AjaxDataSource(data_url='http://localhost:5050/data',
                        polling_interval=1000)
tools = ["hover", "pan", "wheel_zoom", "reset"]

p = figure(plot_width=1200, plot_height=800, y_range=(10, 50), tools=tools,
           x_axis_label="Seconds Ago from current time", y_axis_label="Temp, °C", y_axis_location="right")

p.multi_line(xs='x', ys='y', source=source, line_width=2)

p.x_range.start = -305
p.x_range.end = 0
p.x_range.follow_interval = 10

try:
    from flask import Flask, jsonify, make_response, request, current_app
except ImportError:
    raise ImportError("You need Flask to run this example!")
Exemplo n.º 28
0
def index():
    global pollfreq
    global range
    post = False

    if request.method == 'POST':
        range = request.form['range']
        post = True
    # print("range:", range)

    # Initialize figure data and data source
    source = AjaxDataSource(data_url="/monitor/data",
                            max_size=5000,
                            polling_interval=pollfreq * 1000,
                            mode='append')

    dates = []
    tempfs = []
    dates, tempfs = get_initial_data(range)

    source.data = dict(x=dates, y=tempfs)

    # Create the plot
    TOOLS = "pan,wheel_zoom,box_zoom,reset,save"
    fig = figure(title='DS18B20 Sensor',
                 x_axis_type='datetime',
                 tools=TOOLS,
                 plot_height=280,
                 sizing_mode='scale_width')
    hover = HoverTool(
        tooltips=[
            ('temp', '@y{0.00}'),
            ('time', '@x{%F %T}'),
        ],
        formatters={
            'x': 'datetime',  # use 'datetime' formatter for 'x' field
        },
        mode='vline')
    fig.add_tools(hover)
    fig.xgrid.grid_line_color = None
    fig.ygrid.grid_line_alpha = 0.8
    fig.xaxis.axis_label = 'Time'
    fig.yaxis.axis_label = 'Temperature'

    fig.y_range = Range1d(60, 90)

    fig.line('x', 'y', source=source, line_width=2)
    fig.add_layout(BoxAnnotation(top=70, fill_alpha=0.1, fill_color='blue'))
    fig.add_layout(
        BoxAnnotation(bottom=70,
                      top=80,
                      fill_alpha=0.1,
                      line_color='green',
                      fill_color='green'))
    fig.add_layout(BoxAnnotation(bottom=80, fill_alpha=0.1, fill_color='red'))

    plot_script, plot_div = components(fig)

    if post:
        return (jsonify(plotscript=plot_script, plotdiv=plot_div))
    else:
        return render_template(
            "monitor/index.html",
            plot_script=plot_script,
            plot_div=plot_div,
            pollfreq=pollfreq,
        )
Exemplo n.º 29
0
def make_ajax_plot():

    source = AjaxDataSource(data_url=request.url_root + 'data/',
                            polling_interval=86400000,
                            mode='append',
                            max_size=300)
    source.data = dict(time=[], karma=[], daily_inc=[], ma_week=[])
    global df, t
    for i in xrange(len(df.karma)):
        t += 1
        source.data['karma'].append(df.karma[i])
        #  t2 = re.split(' .*', str(df.date[i]))[0]
        source.data['time'].append(t)
        if i == 0:
            source.data['daily_inc'].append(0)
            source.data['ma_week'].append(0)
        else:
            source.data['daily_inc'].append(df.karma[i] - df.karma[i - 1])
            source.data['ma_week'].append(_moving_avg(list(df.karma[:i])))

    p = figure(plot_height=500,
               tools="xpan,xwheel_zoom,xbox_zoom,reset",
               x_axis_type=None,
               y_axis_location="right")
    p.x_range.follow = "end"
    p.x_range.follow_interval = 100
    p.x_range.range_padding_units = 'absolute'
    p.x_range.range_padding = 10
    p.line(x='time',
           y='karma',
           alpha=0.2,
           line_width=3,
           color='orange',
           source=source,
           legend='Karma Trend')
    p.legend.location = "top_left"

    p2 = figure(plot_height=250,
                x_range=p.x_range,
                tools="xpan,xwheel_zoom,xbox_zoom,reset",
                y_axis_location="right")
    p2.segment(x0='time',
               y0=0,
               x1='time',
               y1='daily_inc',
               line_width=6,
               color='black',
               alpha=0.5,
               source=source,
               legend='Daily Increase')
    p2.line(x='time',
            y='ma_week',
            color='red',
            source=source,
            legend='Weekly Moving Average')
    p2.legend.location = "top_left"

    final_plot = gridplot([[p], [p2]],
                          toolbar_location="left",
                          plot_width=1000)

    script, div = components(final_plot)
    return script, div
Exemplo n.º 30
0
def graph():
    ajax_input = dict(x_time=[],
                      x1_time=[],
                      y=[],
                      y_female=[],
                      y_male=[],
                      x_female_proj=[],
                      y_female_proj=[],
                      x_male_proj=[],
                      y_male_proj=[],
                      y_female_avg_viewing=[],
                      y_male_avg_viewing=[])

    source = AjaxDataSource(data=ajax_input,
                            data_url='http://127.0.0.1:5000/data',
                            polling_interval=ajax_refresh_inter *
                            1000)  #adapter=adapter)

    p = figure(plot_height=300,
               plot_width=800,
               x_axis_type="datetime",
               tools="wheel_zoom,reset",
               title="People Viewing Statistics")
    p.line(x='x_time',
           y='y',
           line_dash="4 4",
           line_width=3,
           color='gray',
           source=source)
    p.vbar(x='x_time',
           top='y_female',
           width=200,
           alpha=0.5,
           color='red',
           legend='female',
           source=source)  #female
    p.vbar(x='x1_time',
           top='y_male',
           width=200,
           alpha=0.5,
           color='blue',
           legend='male',
           source=source)  #male
    p.xaxis.formatter = DatetimeTickFormatter(milliseconds=["%X"],
                                              seconds=["%X"],
                                              minutes=["%X"],
                                              hours=["%X"])
    p.y_range = DataRange1d(start=0,
                            range_padding=5)  #padding leave margin on the top
    p.legend.orientation = "horizontal"  #legend horizontal
    p.xaxis.axis_label = 'Time'
    p.yaxis.axis_label = 'Number'
    # p.x_range.follow = "end"
    # p.x_range.follow_interval = timedelta(seconds=30)

    p2 = figure(plot_height=300,
                plot_width=800,
                tools="wheel_zoom,reset",
                title="Project Viewing Statistics")
    p2.vbar(x='x_female_proj',
            top='y_female_proj',
            width=f2_vbar_interval,
            alpha=0.5,
            color='red',
            legend='female',
            source=source)  #female
    p2.vbar(x='x_male_proj',
            top='y_male_proj',
            width=f2_vbar_interval,
            alpha=0.5,
            color='blue',
            legend='male',
            source=source)  #male
    p2.xaxis.ticker = [2, 6, 10, 14]
    p2.xaxis.major_label_overrides = {2: 'P1', 6: 'P2', 10: 'P3', 14: 'P4'}

    # avg_view_male = LabelSet(x='x_male_proj', y='y_male_proj', text='y_male_avg_viewing', level='glyph',
    #           x_offset=0, y_offset=5, source=source, render_mode='canvas')
    # avg_view_female = LabelSet(x='x_female_proj', y='y_female_proj', text='y_female_avg_viewing', level='glyph',
    #           x_offset=0, y_offset=5, source=source, render_mode='canvas')
    #
    # p2.add_layout(avg_view_male)
    # p2.add_layout(avg_view_female)

    p2.x_range = DataRange1d(start=0, end=16)  #padding leave margin on the top
    p2.y_range = DataRange1d(start=0,
                             range_padding=5)  #padding leave margin on the top
    p2.legend.orientation = "horizontal"
    p2.xaxis.axis_label = 'Project'
    p2.yaxis.axis_label = 'Number'

    js_resources = INLINE.render_js()
    css_resources = INLINE.render_css()

    script, div = components((p, p2))

    html = render_template(
        'embed.html',
        plot_script=script,
        plot_div=div[0],
        plot_div2=div[1],
        js_resources=js_resources,
        css_resources=css_resources,
    )

    return encode_utf8(html)
Exemplo n.º 31
0
from bokeh.models import HoverTool, AjaxDataSource
from bokeh.plotting import figure, show, output_file

data = AjaxDataSource(data_url='./random.json',
                      method='GET',
                      content_type='application/json')
output_file("bokeh.html", title="scatter 100k points (with WebGL)")

p = figure(webgl=True,
           tools=[HoverTool(), 'pan', 'wheel_zoom'],
           plot_height=1000,
           plot_width=1000)
p.circle('x',
         'y',
         alpha=0.9,
         source=data,
         size=10,
         color='steelblue',
         hover_color='red')

show(p)