def get_sample():
    """
    Returns a sample with box-shaped core-shell particles on a substrate.
    """
    # defining materials
    m_vacuum = ba.HomogeneousMaterial("Vacuum", 0.0, 0.0)
    m_shell = ba.HomogeneousMaterial("Shell", 1e-4, 2e-8)
    m_core = ba.HomogeneousMaterial("Core", 6e-5, 2e-8)

    # collection of particles
    parallelepiped1_ff = ba.FormFactorBox(16 * nm, 16 * nm, 8 * nm)
    parallelepiped2_ff = ba.FormFactorBox(12 * nm, 12 * nm, 7 * nm)
    shell_particle = ba.Particle(m_shell, parallelepiped1_ff)
    core_particle = ba.Particle(m_core, parallelepiped2_ff)
    core_position = ba.kvector_t(0.0, 0.0, 0.0)

    particle = ba.ParticleCoreShell(shell_particle, core_particle,
                                    core_position)
    particle_layout = ba.ParticleLayout()
    particle_layout.addParticle(particle)
    interference = ba.InterferenceFunctionNone()
    particle_layout.setInterferenceFunction(interference)

    vacuum_layer = ba.Layer(m_vacuum)
    vacuum_layer.addLayout(particle_layout)

    multi_layer = ba.MultiLayer()
    multi_layer.addLayer(vacuum_layer)

    return multi_layer
Exemplo n.º 2
0
def get_sample():
    """
    Returns a sample with a magnetic core-shell particle in a solvent.
    """
    # Defining Materials
    mat_solvent = ba.HomogeneousMaterial("Solvent", 5e-6, 0.0)
    mat_core = ba.HomogeneousMaterial("Core", 6e-6, 2e-8,
                                      magnetization_core)
    mat_shell = ba.HomogeneousMaterial("Shell", 1e-7, 2e-8)

    # Defining Layer
    solvent_layer = ba.Layer(mat_solvent)

    # Defining particle layout with a core-shell particle
    layout = ba.ParticleLayout()
    core_sphere_ff = ba.FormFactorFullSphere(10*nm)
    shell_sphere_ff = ba.FormFactorFullSphere(12*nm)
    core = ba.Particle(mat_core, core_sphere_ff)
    shell = ba.Particle(mat_shell, shell_sphere_ff)
    position = kvector_t(0.0, 0.0, 2.0)
    particleCoreShell = ba.ParticleCoreShell(shell, core, position)
    layout.addParticle(particleCoreShell)

    # Adding layout to layer
    solvent_layer.addLayout(layout)

    # Defining Multilayer with single layer
    multiLayer = ba.MultiLayer()
    multiLayer.addLayer(solvent_layer)
    return multiLayer
Exemplo n.º 3
0
    def get_sample():
        # Defining Materials
        material_1 = ba.HomogeneousMaterial("Air", 0.0, 0.0)
        material_2 = ba.MaterialBySLD("Au", 4.6665e-06, -1.6205e-08)
        material_3 = ba.MaterialBySLD("Si", 2.0737e-06, -2.3758e-11)

        # Defining Layers

        layer_1 = ba.Layer(material_1)
        layer_2 = ba.Layer(material_3)

        formFactor_1 = ba.FormFactorCone6(159.0 * nm, 640.0 * nm, 86.0 * deg)
        formFactor_2 = ba.FormFactorCone6(157.0 * nm, 640.0 * nm, 86.0 * deg)
        formFactor_3 = ba.FormFactorTruncatedSphere(115.0 * nm, 160.0 * nm,
                                                    0.0 * nm)

        particle_1 = ba.Particle(material_2, formFactor_1)
        particle_2 = ba.Particle(material_3, formFactor_2)
        particle_3 = ba.Particle(material_2, formFactor_3)
        particle_3_position = kvector_t(0.0 * nm, 0.0 * nm, 640.0 * nm)
        particle_3.setPosition(particle_3_position)

        # Defining Core Shell Particles

        particleCoreShell_1 = ba.ParticleCoreShell(particle_2, particle_1)
        particleCoreShell_1_rotation = ba.RotationZ(0 * deg)
        particleCoreShell_1.setRotation(particleCoreShell_1_rotation)

        # Defining composition of particles at specific positions
        particleComposition_1 = ba.ParticleComposition()
        particleComposition_1.addParticle(particleCoreShell_1)
        particleComposition_1.addParticle(particle_3)
        particleComposition_1_rotation = ba.RotationX(0.0 * deg)
        particleComposition_1.setRotation(particleComposition_1_rotation)

        # Defining Interference Functions
        interference_1 = ba.InterferenceFunction2DLattice(
            1500.0 * nm, 1500.0 * nm, 120.0 * deg, i * deg)
        interference_1_pdf = ba.FTDecayFunction2DCauchy(
            1000.0 * nm, 1000.0 * nm, 0.0 * deg)
        interference_1.setDecayFunction(interference_1_pdf)
        interference_1.setPositionVariance(500.0 * nm2)

        # Defining Particle Layouts and adding Particles
        layout_1 = ba.ParticleLayout()
        layout_1.addParticle(particleComposition_1, 1.0)
        layout_1.setInterferenceFunction(interference_1)
        layout_1.setTotalParticleSurfaceDensity(0.000001)

        # Adding layouts to layers
        layer_1.addLayout(layout_1)

        # Defining Multilayers
        multiLayer_1 = ba.MultiLayer()
        multiLayer_1.addLayer(layer_1)
        multiLayer_1.addLayer(layer_2)
        return multiLayer_1
Exemplo n.º 4
0
    def get_sample():
        # Defining Materials
        material_1 = ba.HomogeneousMaterial("Air", 0.0, 0.0)
        material_2 = ba.MaterialBySLD("Au", 4.6665e-06, -1.6205e-08)
        material_3 = ba.MaterialBySLD("Si", 2.0737e-06, -2.3758e-11)
        material_4 = ba.MaterialBySLD("Fe", 7.9486e-06, -5.9880e-10)

        # Defining Layers

        layer_1 = ba.Layer(material_1)
        layer_2 = ba.Layer(material_3)

        formFactor_1 = ba.FormFactorCone6(85 * nm, 385.0 * nm, 86.0 * deg)
        formFactor_2 = ba.FormFactorCone6(84 * nm, 385.0 * nm, 86.0 * deg)
        formFactor_3 = ba.FormFactorTruncatedSphere(68.0 * nm, 95.0 * nm,
                                                    0.0 * nm)

        particle_1 = ba.Particle(material_4, formFactor_1)
        particle_2 = ba.Particle(material_3, formFactor_2)
        particle_3 = ba.Particle(material_2, formFactor_3)
        particle_3_position = kvector_t(0.0 * nm, 0.0 * nm, 385.0 * nm)
        particle_3.setPosition(particle_3_position)

        # Defining Core Shell Particles

        particleCoreShell_1 = ba.ParticleCoreShell(particle_2, particle_1)
        particleCoreShell_1_rotation = ba.RotationZ(i * deg)
        particleCoreShell_1.setRotation(particleCoreShell_1_rotation)

        # Defining composition of particles at specific positions
        particleComposition_1 = ba.ParticleComposition()
        particleComposition_1.addParticle(particleCoreShell_1)
        particleComposition_1.addParticle(particle_3)
        particleComposition_1_rotation = ba.RotationX(0.0 * deg)
        particleComposition_1.setRotation(particleComposition_1_rotation)

        # Defining Particle Layouts and adding Particles
        layout_1 = ba.ParticleLayout()
        layout_1.addParticle(particleComposition_1, 1.0)
        layout_1.setTotalParticleSurfaceDensity(0.01)

        # Adding layouts to layers
        layer_1.addLayout(layout_1)

        # Defining Multilayers
        multiLayer_1 = ba.MultiLayer()
        multiLayer_1.addLayer(layer_1)
        multiLayer_1.addLayer(layer_2)
        return multiLayer_1
Exemplo n.º 5
0
    def get_sample():
        # Defining Materials
        material_1 = ba.HomogeneousMaterial("Air", 0.0, 0.0)
        material_2 = ba.MaterialBySLD("Au", 4.6665e-06, -1.6205e-08)
        material_3 = ba.MaterialBySLD("Si", 2.0737e-06, -2.3758e-11)

        # Defining Layers
        layer_1 = ba.Layer(material_1)
        layer_2 = ba.Layer(material_3)

        # Defining Form Factors
        formFactor_1 = ba.FormFactorCone6(90.0 * nm, 270.0 * nm, 75.0 * deg)
        formFactor_2 = ba.FormFactorCone6(88.0 * nm, 270.0 * nm, 75.0 * deg)

        # Defining Particles
        particle_1 = ba.Particle(material_2, formFactor_1)
        particle_2 = ba.Particle(material_3, formFactor_2)

        # Defining Core Shell Particles

        particleCoreShell_1 = ba.ParticleCoreShell(particle_2, particle_1)
        particleCoreShell_1_rotation = ba.RotationZ(i * deg)
        particleCoreShell_1.setRotation(particleCoreShell_1_rotation)

        # Defining Particle Layouts and adding Particles
        layout_1 = ba.ParticleLayout()
        layout_1.addParticle(particleCoreShell_1, 1.0)
        layout_1.setTotalParticleSurfaceDensity(0.0001)

        # Defining Roughness Parameters
        # layerRoughness_1 = ba.LayerRoughness(1.0, 0.3, 5.0*nm)

        # Adding layouts to layers
        layer_1.addLayout(layout_1)

        # Defining Multilayers
        multiLayer_1 = ba.MultiLayer()
        multiLayer_1.addLayer(layer_1)
        multiLayer_1.addLayer(layer_2)
        # multiLayer_1.addLayerWithTopRoughness(layer_2, layerRoughness_1)
        return multiLayer_1
Exemplo n.º 6
0
def get_sample():
    """
    Returns a sample
    """
    # defining materials
    m_si = ba.MaterialBySLD("Si", sld_Si, sld_Si_im)
    m_d2o = ba.MaterialBySLD("D2O", sld_D2O, sld_D2O_im)
    m_core = ba.MaterialBySLD("Me3O5:D2O2", 2.0 * 1.0e-06, 0.0)
    m_shell = ba.MaterialBySLD("Me3O5:D2O", 3.9 * 1.0e-06, 0.0)

    # layer with particles
    # calculate average SLD
    Vcore = vol(core_radius, core_height)
    Vshell = vol(radius, height) - Vcore
    f_d2o = 0.7
    f_core = (1.0 - f_d2o) / (1 + Vshell / Vcore)
    f_shell = (1.0 - f_d2o) / (1 + Vcore / Vshell)
    sld_mix = f_d2o * sld_D2O + f_shell * 3.9 * 1.0e-06 + f_core * 2.0 * 1.0e-06
    m_mix = ba.MaterialBySLD("mix", sld_mix, 0.0)

    # fluctuation component
    ff_microgel = FormFactorMicrogel(b, xi, xiz)
    microgel = ba.Particle(m_core, ff_microgel)
    microgel_layout = ba.ParticleLayout()
    microgel_layout.addParticle(microgel, 1.0)

    # collection of particles
    ff = ba.FormFactorTruncatedSphere(radius=radius, height=height)
    ff_core = ba.FormFactorTruncatedSphere(radius=core_radius,
                                           height=core_height)
    transform = ba.RotationY(180.0 * deg)
    shell_particle = ba.Particle(m_shell, ff)
    core_particle = ba.Particle(m_core, ff_core)
    core_position = ba.kvector_t(0.0, 0.0, 0.0)
    particle = ba.ParticleCoreShell(shell_particle, core_particle,
                                    core_position)
    particle.setPosition(ba.kvector_t(0.0, 0.0, 0.0))
    particle.setRotation(transform)

    nparticles = 2  # the larger is this number, the more slow will be the simulation. 10 is usually enough
    sigma = 0.2 * radius

    gauss_distr = ba.DistributionGaussian(radius, sigma)

    sigma_factor = 2.0
    par_distr = ba.ParameterDistribution(
        "/ParticleCoreShell/Particle1/TruncatedSphere/Radius",
        gauss_distr, nparticles, sigma_factor,
        ba.RealLimits.lowerLimited(core_radius + 1.0))
    par_distr.linkParameter(
        "/ParticleCoreShell/Particle1/TruncatedSphere/Height")
    par_distr.linkParameter(
        "/ParticleCoreShell/Particle0/TruncatedSphere/Height")
    par_distr.linkParameter(
        "/ParticleCoreShell/Particle0/TruncatedSphere/Radius")
    part_coll = ba.ParticleDistribution(particle, par_distr)

    microgel_layout.addParticle(part_coll, 1.2e-05)

    # interference can be neglected
    interference = ba.InterferenceFunctionNone()
    microgel_layout.setInterferenceFunction(interference)

    # describe layer roughness
    roughness = ba.LayerRoughness()
    roughness.setSigma(1.2 * ba.nm)
    roughness.setHurstParameter(0.8)
    roughness.setLatteralCorrLength(570.0 * ba.nm)

    # create layers
    d2o_layer = ba.Layer(m_d2o)
    mix_layer = ba.Layer(m_mix, 2.0 * height)
    mix_layer.addLayout(microgel_layout)
    si_layer = ba.Layer(m_si)
    multi_layer = ba.MultiLayer()
    multi_layer.addLayer(si_layer)
    multi_layer.addLayer(mix_layer)
    multi_layer.addLayerWithTopRoughness(d2o_layer, roughness)

    return multi_layer