Exemplo n.º 1
0
def stocks_from_file():
    companies = list()
    with open(SELECTED_STOCKS, mode='r', encoding='UTF-8') as file:
        for line in file:
            trade_code = line.split(';')[1]
            companies.append(db.stock_by_trade_code(trade_code))
    return companies
Exemplo n.º 2
0
def process_stock(a, count, num, sort_action, upload_files):
    if a[4] == property.STOCKS:
        if count is not None and count == num:
            return
        trade_code = a[7]
        LOG.info('Process stock %s in thred %s' % (trade_code, threading.get_ident()))
        try:
            stock = db.stock_by_trade_code(trade_code)
        except db.NotFoundStock as e:
            stock = s.Stock()
        stock_line(stock, line=a)
        ## TODO: need to add loading history of the stock

        #  LOG.info("Will updated finance document company " + str(a))
        #  load_files(stock.trade_code, stock.url)
        #  stock.files_name = get_list(property.TYPE2_PATH + "/" + stock.trade_code + property.ARCHIVES + '/')
        stock.short_name = get_short_name(stock.trade_code)

        stock.finame_em = finam_code(stock.trade_code)
        #  update_stock_from_file(stock.emitent_full_name, False)
        stock.lot = get_lot(stock.trade_code)

        sort_action.append(stock)
        #  if upload_files:
        stock.save()
        LOG.info("Save stock %s" % str(stock._id))
        return num
Exemplo n.º 3
0
def get_stock_from_portfolio(portfolios):
    stocks = list()
    sharpes = list()
    for portfolio in portfolios:
        portfolio_stock = list()
        sharpes.append(portfolio.max_item.sharpe_ratio)
        for stock in portfolio.max_item.stocks:
            portfolio_stock.append(db.stock_by_trade_code(stock.trade_code))
        stocks.append(portfolio_stock)
    return stocks, sharpes
Exemplo n.º 4
0
def process_stock_tivest(num, ta):
    trade_code = ta.ticker
    LOG.info('Process stock %s in thread %s' % (trade_code, threading.get_ident()))
    try:
        stock = db.stock_by_trade_code(trade_code)
    except db.NotFoundStock as e:
        stock = s.Stock()

    stock.update_from_tinvest(ta)
    stock.save()
    LOG.info("Save stock %s" % str(stock._id))
    return num
Exemplo n.º 5
0
def load_history(trade_code):
    LOG.info('[%s]' % trade_code)
    stock = db.stock_by_trade_code(trade_code)
    stock.month_history = list()
    stock.week_history = list()
    stock.day_history = list()
    stock.hour_history = list()

    for period in property.FINAM_PERIODS:
        process_by_period(stock, period)

    stock.save()
    return trade_code
Exemplo n.º 6
0
def update_stock_from_file(name, download, is_priviledged=False):
    try:
        LOG.info('Update from file')
        if name == "" or name is None:
            raise db.NotFoundStock
        stock = db.stock_by_trade_code(name, is_priviledged)
        action = read_to_list(property.DATA)
        stock_file = None
        for a in action:
            stock_file = stock_from_line(name, a, download)
            if stock_file is not None:
                break
        stock.update_file(stock_file)
        stock.save()
    except db.NotFoundStock:
        LOG.error('Not found stock. Update all.')
        load_stocks(upload_files=download)
Exemplo n.º 7
0
def load_history_tinvest(trade_code):
    LOG.info('[%s]' % trade_code)
    try:
        stock = db.stock_by_trade_code(trade_code)
    except db.NotFoundStock as e:
        return ""

    stock.month_history = list()
    stock.week_history = list()
    stock.day_history = list()
    stock.hour_history = list()

    for period in property.TINVESE_PERIODS:
        process_by_period_tinvest(stock, period)
        time.sleep(0.5)

    stock.save()
    return trade_code
Exemplo n.º 8
0
def predict(porftolio: pf.ItemPortfolio,
            money: int,
            from_date=(datetime.today() - timedelta(days=21)),
            to_date=datetime.today() - timedelta(days=1)):
    income = list()

    correct_summ = list()
    table = texttable.Texttable()
    table.add_row([
        'Code', 'SHORT', 'LOT', 'COUNT', 'COUNT_LOT', 'BASE_COUNT', 'PRICE',
        'PART', 'FULL', 'INCOME'
    ])
    for stock in porftolio.stocks:
        try:
            part = float(stock.value)
            trade_code = str(stock.trade_code)
            stock_orm = db.stock_by_trade_code(trade_code)
            lot = int(stock_orm.lot)
            from_price = load_price(stock_orm, from_date)
            count, before_correct_count, full = correct_on_lot(
                lot, part, money, from_price)
            correct_full_pirce = count * from_price
            correct_summ.append(correct_full_pirce)
            to_price = load_price(stock_orm, to_date)
            income.append(float(count * to_price))
            row = [
                stock_orm.trade_code, stock_orm.short_name, stock_orm.lot,
                count, full, before_correct_count, from_price, part,
                count * from_price, to_price
            ]
            table.add_row(row)
        except AttributeError:
            LOG.error('For stock %s not found attribute' % stock.trade_code)

    result = sum(income)
    print(table.draw())
    LOG.info('Portfolio base price %s (%s) from %s to %s with price %s' %
             (money, sum(correct_summ), from_date, to_date, result))
    return result, sum(correct_summ)
Exemplo n.º 9
0
    sharpes_sm = list()
    sharpes_nsga = list()
    sharpes_nsgaiii = list()
    wgmean_sm = list()
    wgmean_nsga = list()
    wgmean_nsgaiii = list()
    time_sm = list()
    time_nsga = list()
    time_nsgaiii = list()
    trade_codes = list()
    for stock in ordered.max_item.stocks:
        trade_codes.append(stock.trade_code)

    stocks = list()
    for trade_code in trade_codes:
        stocks.append(db.stock_by_trade_code(trade_code))

    for num, iter in enumerate(iterations):
        fig = plt.figure('compare-' + str(iter))
        data = solver.get_stock_price(stocks)
        returns = data.pct_change()

        days = len(stocks[0].day_history)
        LOG.info('History length %d' % int(days))

        mean_daily_returns = returns.mean()
        cov_matrix = returns.cov()
        avr_gmean, gmeans = solver.average_gmean(returns)

        LOG.info('Geometric mean: %.8f, Daily meand: %.8f, Gmeans: %.8f' %
                 (avr_gmean, np.average(mean_daily_returns), gmeans))
Exemplo n.º 10
0
def all_stock(stocks):
    companies = list()
    for trade_code in stocks:
        companies.append(db.stock_by_trade_code(trade_code))
    return companies