Exemplo n.º 1
0
def get_cluster_status(cluster_id):
	try:
		emr_connection = EmrConnection()
		flow = emr_connection.describe_jobflow(cluster_id)
		if flow == None:
			return "none"
		return flow.state
	except Exception, e:
		return "none"
Exemplo n.º 2
0
class EMR:
    def creating_a_connection(self):
        #Creating a connection
        from boto.emr.connection import EmrConnection
        self.conn = EmrConnection('', '')

    def creating_streaming_job(self):
        #Creating Streaming JobFlow Steps
        from boto.emr.step import StreamingStep
        self.step = StreamingStep(name='my bigdata task',
            mapper='s3n://eth-src/raw_to_stations.py',
            #mapper='s3n://elasticmapreduce/samples/wordcount/wordSplitter.py',
            reducer='s3n://eth-src/stations_to_features.py',
            #reducer='aggregate',
            input='s3n://eth-input/2007.csv',
            #input='s3n://elasticmapreduce/samples/wordcount/input',
            output='s3n://eth-middle/2007')

    def creating_jobflows(self):
        #Creating JobFlows
        #import boto.emr
        #self.conn = boto.emr.connect_to_region('eu-west-1')
        job_id = self.conn.run_jobflow(name='My jobflow',
                log_uri='s3://eth-log/jobflow_logs',
                master_instance_type='m3.xlarge',
                slave_instance_type='m1.large',
                num_instances=2,
                steps=[self.step],
                ami_version='3.3.1'
                )

        status = self.conn.describe_jobflow(job_id)
        status.state

    def terminating_jobflows(self, job_id):
        #Terminating JobFlows
        #self.conn = boto.emr.connect_to_region('eu-west-1')
        self.conn.terminate_jobflow(job_id)
Exemplo n.º 3
0
                           'OUTPUT=s3://dphiveoutput'])

jobname = 'MM Logs Jobflow %s' %dt.datetime.now()

jobid = conne.run_jobflow(name=jobname,
                          log_uri='s3://dphive/debug/',
                          ec2_keyname='dpaws',
                          master_instance_type='c1.medium',
                          slave_instance_type='c1.medium',
                          num_instances=3,
                          steps=[step1, step2])



while True:
	status = conne.describe_jobflow(jobid)
	if status.state == 'STARTING':
		time.sleep(10)
	elif status.state == 'RUNNING':
		time.sleep(10)
	elif status.state == 'WAITING':
		time.sleep(10)
	elif status.state == 'TERMINATED':
		send('Hadoop Job Runner Update %s'%(dt.datetime.now()), 'The Hadoop Job: %s currently has the status: %s' %(jobid, status.state), '*****@*****.**')
		break
	elif status.state == 'FAILED':
		send('Hadoop Job Runner Update %s'%(dt.datetime.now()), 'The Hadoop Job: %s currently has the status: %s' %(jobid, status.state), ['*****@*****.**', '*****@*****.**'])
		break
	elif status.state == 'SHUTTING_DOWN':
		time.sleep(10)
	elif status.state == 'COMPLETED':
Exemplo n.º 4
0
class Rankmaniac:
    """
    (wrapper class)

    This class presents a simple wrapper around the AWS SDK. It strives
    to provide all the functionality required to run map-reduce
    (Hadoop) on Amazon. This way the students do not need to worry about
    learning the API for Amazon S3 and EMR, and instead can focus on
    computing pagerank quickly!
    """

    DefaultRegionName = 'us-west-2'
    DefaultRegionEndpoint = 'elasticmapreduce.us-west-2.amazonaws.com'

    def __init__(self,
                 team_id,
                 access_key,
                 secret_key,
                 bucket='cs144students'):
        """
        (constructor)

        Creates a new instance of the Rankmaniac class for a specific
        team using the provided credentials.

        Arguments:
            team_id       <str>     the team identifier, which may be
                                    differ slightly from the actual team
                                    name.

            access_key    <str>     the AWS access key identifier.
            secret_key    <str>     the AWS secret acess key.

        Keyword arguments:
            bucket        <str>     the S3 bucket name.
        """

        region = RegionInfo(None, self.DefaultRegionName,
                            self.DefaultRegionEndpoint)

        self._s3_bucket = bucket
        self._s3_conn = S3Connection(access_key, secret_key)
        self._emr_conn = EmrConnection(access_key, secret_key, region=region)

        self.team_id = team_id
        self.job_id = None

        self._reset()
        self._num_instances = 1

    def _reset(self):
        """
        Resets the internal state of the job and submission.
        """

        self._iter_no = 0
        self._infile = None
        self._last_outdir = None

        self._last_process_step_iter_no = -1
        self._is_done = False

    def __del__(self):
        """
        (destructor)

        Terminates the map-reduce job if any, and closes the connections
        to Amazon S3 and EMR.
        """

        if self.job_id is not None:
            self.terminate()

        self._s3_conn.close()
        self._emr_conn.close()

    def __enter__(self):
        """
        Used for `with` syntax. Simply returns this instance since the
        set-up has all been done in the constructor.
        """

        return self

    def __exit__(self, type, value, traceback):
        """
        Refer to __del__().
        """

        self.__del__()
        return False  # do not swallow any exceptions

    def upload(self, indir='data'):
        """
        Uploads the local data to Amazon S3 under the configured bucket
        and key prefix (the team identifier). This way the code can be
        accessed by Amazon EMR to compute pagerank.

        Keyword arguments:
            indir       <str>       the base directory from which to
                                    upload contents.

        Special notes:
            This method only uploads **files** in the specified
            directory. It does not scan through subdirectories.

            WARNING! This method removes all previous (or ongoing)
            submission results, so it is unsafe to call while a job is
            already running (and possibly started elsewhere).
        """

        if self.job_id is not None:
            raise RankmaniacError('A job is already running.')

        bucket = self._s3_conn.get_bucket(self._s3_bucket)

        # Clear out current bucket contents for team
        keys = bucket.list(prefix=self._get_keyname())
        bucket.delete_keys(keys)

        for filename in os.listdir(indir):
            relpath = os.path.join(indir, filename)
            if os.path.isfile(relpath):
                keyname = self._get_keyname(filename)
                key = bucket.new_key(keyname)
                key.set_contents_from_filename(relpath)

    def set_infile(self, filename):
        """
        Sets the data file to use for the first iteration of the
        pagerank step in the map-reduce job.
        """

        if self.job_id is not None:
            raise RankmaniacError('A job is already running.')

        self._infile = filename

    def do_iter(self,
                pagerank_mapper,
                pagerank_reducer,
                process_mapper,
                process_reducer,
                pagerank_output=None,
                process_output=None,
                num_pagerank_mappers=1,
                num_pagerank_reducers=1):
        """
        Adds a pagerank step and a process step to the current job.
        """

        num_process_mappers = 1
        num_process_reducers = 1

        if self._iter_no == 0:
            pagerank_input = self._infile
        elif self._iter_no > 0:
            pagerank_input = self._last_outdir

        if pagerank_output is None:
            pagerank_output = self._get_default_outdir('pagerank')

        # Output from the pagerank step becomes input to process step
        process_input = pagerank_output

        if process_output is None:
            process_output = self._get_default_outdir('process')

        pagerank_step = self._make_step(pagerank_mapper, pagerank_reducer,
                                        pagerank_input, pagerank_output,
                                        num_pagerank_mappers,
                                        num_pagerank_reducers)

        process_step = self._make_step(process_mapper, process_reducer,
                                       process_input, process_output,
                                       num_process_mappers,
                                       num_process_reducers)

        steps = [pagerank_step, process_step]
        if self.job_id is None:
            self._submit_new_job(steps)
        else:
            self._emr_conn.add_jobflow_steps(self.job_id, steps)

        # Store `process_output` directory so it can be used in
        # subsequent iteration
        self._last_outdir = process_output
        self._iter_no += 1

    def is_done(self):
        """
        Returns `True` if the map-reduce job is done, and `False`
        otherwise.

        For all process-step output files that have not been fetched,
        gets the first part of the output file, and checks whether its
        contents begins with the string 'FinalRank'.

        Special notes:
            WARNING! The usage of this method in your code requires that
            that you used the default output directories in all calls
            to do_iter().
        """

        # Cache the result so we can return immediately without hitting
        # any of the Amazon APIs
        if self._is_done:
            return True

        iter_no = self._get_last_process_step_iter_no()
        if iter_no < 0:
            return False

        while self._last_process_step_iter_no < iter_no:
            self._last_process_step_iter_no += 1
            i = self._last_process_step_iter_no

            outdir = self._get_default_outdir('process', iter_no=i)
            keyname = self._get_keyname(outdir, 'part-00000')

            bucket = self._s3_conn.get_bucket(self._s3_bucket)
            key = Key(bucket=bucket, name=keyname)
            contents = key.next()  # get first chunk of the output file

            if contents.startswith('FinalRank'):
                self._is_done = True  # cache result
                break

        return self._is_done

    def is_alive(self):
        """
        Checks whether the jobflow has completed, failed, or been
        terminated.

        Special notes:
            WARNING! This method should only be called **after**
            is_done() in order to be able to distinguish between the
            cases where the map-reduce job has outputted 'FinalRank'
            on its final iteration and has a 'COMPLETED' state.
        """

        jobflow = self.describe()
        if jobflow.state in ('COMPLETED', 'FAILED', 'TERMINATED'):
            return False

        return True

    def terminate(self):
        """
        Terminates a running map-reduce job.
        """

        if not self.job_id:
            raise RankmaniacError('No job is running.')

        self._emr_conn.terminate_jobflow(self.job_id)
        self.job_id = None

        self._reset()

    def download(self, outdir='results'):
        """
        Downloads the results from Amazon S3 to the local directory.

        Keyword arguments:
            outdir      <str>       the base directory to which to
                                    download contents.

        Special notes:
            This method downloads all keys (files) from the configured
            bucket for this particular team. It creates subdirectories
            as needed.
        """

        bucket = self._s3_conn.get_bucket(self._s3_bucket)
        keys = bucket.list(prefix=self._get_keyname())
        for key in keys:
            keyname = key.name
            # Ignore folder keys
            if '$' not in keyname:
                suffix = keyname.split('/')[1:]  # removes team identifier
                filename = os.path.join(outdir, *suffix)
                dirname = os.path.dirname(filename)

                if not os.path.exists(dirname):
                    os.makedirs(dirname)

                key.get_contents_to_filename(filename)

    def describe(self):
        """
        Gets the current map-reduce job details.

        Returns a boto.emr.emrobject.JobFlow object.

        Special notes:
            The JobFlow object has the following relevant fields.
                state       <str>           the state of the job flow,
                                            either COMPLETED
                                                 | FAILED
                                                 | TERMINATED
                                                 | RUNNING
                                                 | SHUTTING_DOWN
                                                 | STARTING
                                                 | WAITING

                steps       <list(boto.emr.emrobject.Step)>
                            a list of the step details in the workflow.

            The Step object has the following relevant fields.
                state               <str>       the state of the step.

                startdatetime       <str>       the start time of the
                                                job.

                enddatetime         <str>       the end time of the job.

            WARNING! Amazon has an upper-limit on the frequency with
            which you can call this method; we have had success with
            calling it at most once every 10 seconds.
        """

        if not self.job_id:
            raise RankmaniacError('No job is running.')

        return self._emr_conn.describe_jobflow(self.job_id)

    def _get_last_process_step_iter_no(self):
        """
        Returns the most recently process-step of the job flow that has
        been completed.
        """

        steps = self.describe().steps
        i = 1

        while i < len(steps):
            step = steps[i]
            if step.state != 'COMPLETED':
                break

            i += 2

        return i / 2 - 1

    def _get_default_outdir(self, name, iter_no=None):
        """
        Returns the default output directory, which is 'iter_no/name/'.
        """

        if iter_no is None:
            iter_no = self._iter_no

        # Return iter_no/name/ **with** the trailing slash
        return '%s/%s/' % (iter_no, name)

    def _submit_new_job(self, steps):
        """
        Submits a new job to run on Amazon EMR.
        """

        if self.job_id is not None:
            raise RankmaniacError('A job is already running.')

        job_name = self._make_name()
        num_instances = self._num_instances
        log_uri = self._get_s3_team_uri('job_logs')
        self.job_id = self._emr_conn.run_jobflow(name=job_name,
                                                 steps=steps,
                                                 num_instances=num_instances,
                                                 log_uri=log_uri)

    def _make_step(self,
                   mapper,
                   reducer,
                   input,
                   output,
                   num_mappers=1,
                   num_reducers=1):
        """
        Returns a new step that runs the specified mapper and reducer,
        reading from the specified input and writing to the specified
        output.
        """

        bucket = self._s3_conn.get_bucket(self._s3_bucket)

        # Clear out current bucket/output contents for team
        keys = bucket.list(prefix=self._get_keyname(output))
        bucket.delete_keys(keys)

        step_name = self._make_name()
        step_args = [
            '-jobconf',
            'mapred.map.tasks=%d' % (num_mappers), '-jobconf',
            'mapred.reduce.tasks=%d' % (num_reducers)
        ]

        return StreamingStep(name=step_name,
                             step_args=step_args,
                             mapper=self._get_s3_team_uri(mapper),
                             reducer=self._get_s3_team_uri(reducer),
                             input=self._get_s3_team_uri(input),
                             output=self._get_s3_team_uri(output))

    def _make_name(self):
        return strftime('%%s %m-%d-%Y %H:%M:%S', localtime()) % (self.team_id)

    def _get_keyname(self, *args):
        """
        Returns the key name to use in the grading bucket (for the
        particular team).

            'team_id/...'
        """

        return '%s/%s' % (self.team_id, '/'.join(args))

    def _get_s3_team_uri(self, *args):
        """
        Returns the Amazon S3 URI for the team submissions.
        """

        return 's3n://%s/%s' % (self._s3_bucket, self._get_keyname(*args))
Exemplo n.º 5
0
for word in b.list():
    keystring = str(word.key)
    if re.match(keystring,'part-00000'):
        word.get_contents_to_filename('/Users/winteram/Documents/Teaching/wordcount_output.txt')

# <codecell>

# Doing our own word counts
step = StreamingStep(name='Alcohol Step',
	mapper='s3n://bia660-winter/mapper.py',
	reducer='s3n://bia660-winter/reducer.py', 
	input='s3://datasets.elasticmapreduce/ngrams/books/20090715/eng-us-all/3gram/data',
	output='s3n://bia660-winter/output')

# <codecell>

jobid = emrcon.run_jobflow(name='Alcohol Religion 6', log_uri='s3://bia660-winter/logfiles',steps=[step],num_instances=4)

# <codecell>

jobid

# <codecell>

status = emrcon.describe_jobflow(jobid)
print status.state

# <codecell>


Exemplo n.º 6
0
from boto.emr.connection import EmrConnection
from boto.emr.step import StreamingStep
import boto

AWS_KEY='AKIAIQ7VG4UORIN75ZSA'
AWS_SECRET='jzxajGx8gzwX+ymYXJ0/5heCjkPtWLQkICYRn7Vj'

conn = EmrConnection(AWS_KEY, AWS_SECRET)

step = StreamingStep(name='My wordcount example',
                      mapper='s3n://css739/wordcount/bigramSplitter.py',
                      reducer='aggregate',
                      input='s3n://smalldata/wikipedia_titles.txt',
                      output='s3n://css739/wordcount/bigram_count_output2',
                      cache_files=['s3n://css739/wordcount/english_stoplist.py'])
                      
                      
jobid = conn.run_jobflow(name='My jobflow', log_uri='s3n://css739/wordcount/jobflow_logs',steps=[step])

conn.describe_jobflow(jobid).state
Exemplo n.º 7
0
    #InstanceGroup(1, 'TASK', 'm1.small', 'ON_DEMAND', 'Task'),
    InstanceGroup(1, 'CORE', 'm1.small', 'ON_DEMAND', 'Core')
]

jf_id = emr.run_jobflow(log_uri='s3://%s/logs' %(bucket_name),
                        name='wc jobflow',
                        steps=[wc_step],
                        #num_instances=NUM_INSTANCES,
                        #master_instance_type='m1.small',
                        #slave_instance_type='m1.small',
                        instance_groups=instance_groups,
                        job_flow_role = 'EMR_EC2_DefaultRole',
                        #bootstrap_actions=[bootstrap_step],
                        service_role = 'EMR_DefaultRole',
                        action_on_failure='CONTINUE',
                        visible_to_all_users="True",
                        ami_version = '2.4',
                        hadoop_version='1.0.3',
                        keep_alive=True)

emr.set_termination_protection(jf_id, True)

print jf_id

while True:
    jf = emr.describe_jobflow(jf_id)
    #print "[%s] %s" % (datetime.now().strftime("%Y-%m-%d %T"), jf.state)
    print datetime.now(), jf.state
    if jf.state == 'COMPLETED':
        break
    sleep(30)
Exemplo n.º 8
0
class EmrLauncher(object):

    # Default constructor of the class.
    def __init__(self):
        try:
            self.zone_name = "ap-southeast-1"
            self.access_key = "xxxxxx"
            self.private_key = "xxxxxxx"
            self.ec2_keyname = "xxxxxxxx"
            self.base_bucket = "s3://emr-bucket/"
            self.bootstrap_script = "custom-bootstrap.sh"
            self.log_dir = "Logs"
            self.emr_status_wait = 20
            self.conn = ""
            self.cluster_name = "MyFirstEmrCluster"

            # Establishing EmrConnection
            self.conn = EmrConnection(self.access_key, self.private_key,
                                 region=RegionInfo(name=self.zone_name,
                                 endpoint=self.zone_name + '.elasticmapreduce.amazonaws.com'))


            self.log_bucket_name = self.base_bucket + self.log_dir
            self.bootstrap_script_name = self.base_bucket + self.bootstrap_script

    def launch_emr_cluster(self, master_type, slave_type, num_instance, ami_version):
        try:
            #Custom Bootstrap step
            bootstrap_step = BootstrapAction("CustomBootStrap", self.bootstrap_script_name, None)

            #Modifyting block size to 256 MB
            block_size_conf = 'dfs.block.size=256'
            hadoop_config_params = ['-h', block_size_conf, '-h']
            hadoop_config_bootstrapper = BootstrapAction('hadoop-config',
                                               's3://elasticmapreduce/bootstrap-actions/configure-hadoop',
                                               hadoop_config_params)
            #Bootstrapping Ganglia
            hadoop_monitor_bootstrapper = BootstrapAction('ganglia-config',
                                                's3://elasticmapreduce/bootstrap-actions/install-ganglia', '')

            #Bootstrapping Impala
            impala_install_params = ['--install-impala','--base-path', 's3://elasticmapreduce', '--impala-version', 'latest']
            bootstrap_impala_install_step = BootstrapAction("ImpalaInstall", "s3://elasticmapreduce/libs/impala/setup-impala",
                                                                                                impala_install_params)
            #Hive installation
            hive_install_step = InstallHiveStep();

            #Pig Installation
            pig_install_step = InstallPigStep();

            #Launching the cluster
            jobid = self.conn.run_jobflow(
                         self.cluster_name,
                         self.log_bucket_name,
                         bootstrap_actions=[hadoop_config_bootstrapper, hadoop_monitor_bootstrapper, bootstrap_step,
                                            bootstrap_impala_install_step],
                         ec2_keyname=self.ec2_keyname,
                         steps=[hive_install_step, pig_install_step],
                         keep_alive=True,
                         action_on_failure = 'CANCEL_AND_WAIT',
                         master_instance_type=master_type,
                         slave_instance_type=slave_type,
                         num_instances=num_instance,
                         ami_version=ami_version)

            #Enabling the termination protection
            self.conn.set_termination_protection(jobid, True)

            #Checking the state of EMR cluster
            state = self.conn.describe_jobflow(jobid).state
            while state != u'COMPLETED' and state != u'SHUTTING_DOWN' and state != u'FAILED' and state != u'WAITING':
                #sleeping to recheck for status.
                time.sleep(int(self.emr_status_wait))
                state = self.conn.describe_jobflow(jobid).state

            if state == u'SHUTTING_DOWN' or state == u'FAILED':
                logging.error("Launching EMR cluster failed")
                return "ERROR"

            #Check if the state is WAITING. Then launch the next steps
            if state == u'WAITING':
                #Finding the master node dns of EMR cluster
                master_dns = self.conn.describe_jobflow(jobid).masterpublicdnsname
                logging.info("Launched EMR Cluster Successfully")
                logging.info("Master node DNS of EMR " + master_dns)
                return "SUCCESS"
        except:
            logging.error("Launching EMR cluster failed")
            return "FAILED"

    def main(self):
        try:
            master_type = 'm3.xlarge'
            slave_type = 'm3.xlarge'
            num_instance = 3
            ami_version = '2.4.8'

            emr_status = self.launch_emr_cluster(master_type, slave_type, num_instance, ami_version)
            if emr_status == 'SUCCESS':
                logging.info("Emr cluster launched successfully")
            else:
                logging.error("Emr launching failed")
        except:
            logging.error("Emr launching failed")
Exemplo n.º 9
0
def main(args):
	script_name = args
	for i in range(2, 3, 2):
		start_time = time.time()


		bucket_name = 'nlp-' + str(i).strip()

		emr_connection = EmrConnection()

		preprocessing_steps = []
		for j in xrange(12, 13, 12):
			preprocessing_steps.append(JarStep(name='prerocessing-' + str(i).strip(),
				jar='s3n://nlp-' + str(i).strip() + '/init/behemoth-core.jar',
				step_args=['com.digitalpebble.behemoth.util.CorpusGenerator',
					'-i', 's3n://nlp-' + str(i).strip() + '/' + str(j).strip() + '/texts',
					'-o', 's3n://nlp-' + str(i).strip() + '/' + str(j).strip() + '/bcorpus']))

		tika_steps = []
		for j in xrange(12, 13, 12):
			tika_steps.append(JarStep(name='tika-' + str(i).strip(),
				jar='s3n://nlp-' + str(i).strip() + '/init/behemoth-tika.jar',
				step_args=['com.digitalpebble.behemoth.tika.TikaDriver',
					'-i', 's3n://nlp-' + str(i).strip() + '/' + str(j).strip() + '/bcorpus',
					'-o', 's3n://nlp-' + str(i).strip() + '/' + str(j).strip() + '/tcorpus']))

		copy_jar_steps = []
		for j in xrange(12, 13, 12):
			copy_jar_steps.append(JarStep(name='copy-jar-' + str(i).strip(),
				jar='s3n://nlp-' + str(i).strip() + '/init/copy-to-hdfs.jar',
				step_args=['s3n://nlp-' + str(i).strip() + '/init/pipeline.pear',
					'/mnt/pipeline.pear']))

		uima_steps = []
		for j in xrange(12, 13, 12):
			uima_steps.append(JarStep(name='uima-' + str(i).strip(),
				jar='s3n://nlp-' + str(i).strip() + '/init/behemoth-uima.jar',
				step_args=['com.digitalpebble.behemoth.uima.UIMADriver',
					's3n://nlp-' + str(i).strip() + '/' + str(j).strip() + '/tcorpus',
					'/mnt/ucorpus',
					'/mnt/pipeline.pear']))

		steps = []
		steps.extend(preprocessing_steps
		steps.extend(tika_steps)
		steps.extend(copy_jar_steps)
		steps.extend(uima_steps)
		steps.extend(extract_result_steps)

		hadoop_params = ['-m','mapred.tasktracker.map.tasks.maximum=1',
		          '-m', 'mapred.child.java.opts=-Xmx10g']
		configure_hadoop_action = BootstrapAction('configure_hadoop', 's3://elasticmapreduce/bootstrap-actions/configure-hadoop', hadoop_params)

		jobid = emr_connection.run_jobflow(name='nlp-cloud-' + str(i).strip(),
			log_uri='s3://nlp-' + str(i).strip() + '/jobflow_logs',
			master_instance_type='m2.xlarge',
			slave_instance_type='m2.xlarge',
			num_instances=i,
			keep_alive=False,
			enable_debugging=False,
			bootstrap_actions=[configure_hadoop_action],
			hadoop_version='1.0.3',
			steps=steps)

		termination_statuses = [u'COMPLETED', u'FAILED', u'TERMINATED']
		while True:
			time.sleep(5)
			status = emr_connection.describe_jobflow(jobid) 
			if status.state in termination_statuses:
				print 'Job finished for %s nodes' % i
				break


		print time.time() - start_time, ' seconds elapsed'



	return True

if (__name__ == '__main__'):
	args = sys.argv
	if (check_args(args)):
		if (main(args)):
			sys.exit()
			print 'Work successfully finished'
		else:
			print 'Could not finish work'
			sys.exit(1)
	else:
		print USAGE_MESSAGE
	sys.exit(2)
Exemplo n.º 10
0
class EmrManager(object):
 
    # Default constructor of the class. Uses default parameters if not provided.
    def __init__(self, parameters):
        try: 
            self.region_name = parameters["region_name"]
            self.access_key = parameters["access_key"]
            self.secret_key = parameters["secret_key"]
            self.ec2_keypair_name = parameters["ec2_keypair_name"]
            self.base_bucket = parameters["base_bucket"]
            self.log_dir = parameters["log_dir"]
            self.emr_status_wait = parameters["emr_status_wait"]
            self.step_status_wait = parameters["step_status_wait"]
            self.emr_cluster_name = parameters["emr_cluster_name"]
        except:
            logging.error("Something went wrong initializing EmrManager")
            sys.exit()

        # Establishing EmrConnection
        self.connection = EmrConnection(self.access_key, self.secret_key,
                             region=RegionInfo(name=self.region_name,
                             endpoint=self.region_name + '.elasticmapreduce.amazonaws.com'))

        self.log_bucket_name = self.base_bucket + self.log_dir
 
    #Method for launching the EMR cluster
    def launch_cluster(self, master_type, slave_type, num_instances, ami_version):
        try:
            #Launching the cluster
            cluster_id = self.connection.run_jobflow(
                             self.emr_cluster_name,
                             self.log_bucket_name,
                             ec2_keyname=self.ec2_keypair_name,
                             keep_alive=True,
                             action_on_failure = 'CANCEL_AND_WAIT',
                             master_instance_type=master_type,
                             slave_instance_type=slave_type,
                             num_instances=num_instances,
                             ami_version=ami_version)

            logging.info("Launching cluster: " + cluster_id + ". Please be patient. Check the status of your cluster in your AWS Console")

            # Checking the state of EMR cluster
            state = self.connection.describe_jobflow(cluster_id).state
            while state != u'COMPLETED' and state != u'SHUTTING_DOWN' and state != u'FAILED' and state != u'WAITING':
                #sleeping to recheck for status.
                time.sleep(int(self.emr_status_wait))
                state = self.connection.describe_jobflow(cluster_id).state
                logging.info("Creating cluster " + cluster_id + ". Status: " + state)
 
            if state == u'SHUTTING_DOWN' or state == u'FAILED':
                logging.error("Launching EMR cluster failed")
                return "ERROR"
 
            #Check if the state is WAITING. Then launch the next steps
            if state == u'WAITING':
                #Finding the master node dns of EMR cluster
                master_dns = self.connection.describe_jobflow(cluster_id).masterpublicdnsname
                logging.info("Launched EMR Cluster Successfully with cluster id:" + cluster_id)
                logging.info("Master node DNS of EMR " + master_dns)
                return cluster_id
        except:
            logging.error("Launching EMR cluster failed")
            return "FAILED"

    # run scripting step in cluster
    def run_scripting_step(self, cluster_id, name, script_path):
        try:
            step = ScriptRunnerStep(name=name, 
                                    step_args=[script_path],
                                    action_on_failure="CONTINUE")
            return self._run_step(cluster_id, step)
        except:
            logging.error("Running scripting step in cluster " + cluster_id + " failed.")
            return "FAILED"

    # run streaming step in cluster
    def run_streaming_step(self, cluster_id, name, mapper_path, reducer_path, input_path, output_path):
        try:
            # bundle files with the job
            files = []
            if mapper_path != "NONE":
                files.append(mapper_path)
                mapper_path = mapper_path.split("/")[-1]
            if reducer_path != "NONE":
                files.append(reducer_path)
                reducer_path = reducer_path.split("/")[-1]
            # build streaming step
            logging.debug("Launching streaming step with mapper: " + mapper_path + " reducer: " + reducer_path + " and files: " + str(files))
            step = StreamingStep(name=name,
                                    step_args=["-files"] + files, 
                                    mapper=mapper_path, 
                                    reducer=reducer_path, 
                                    input=input_path, 
                                    output=output_path, 
                                    action_on_failure="CONTINUE")
            return self._run_step(cluster_id, step)            
        except:
            logging.error("Running streaming step in cluster " + cluster_id + " failed.")
            return "FAILED"

    # run mapreduce jar step in cluster
    def run_jar_step(self, cluster_id, name, jar_path, class_name, input_path, output_path):
        try:
            # build streaming step
            logging.debug("Launching jar step with jar: " + jar_path + " class name: " + class_name + " input: " + input_path + " and output: " + output_path)
            step = JarStep(name=name,
                            jar=jar_path, 
                            step_args= [class_name,
                                        input_path,
                                        output_path])
            return self._run_step(cluster_id, step)            
        except:
            logging.error("Running jar step in cluster " + cluster_id + " failed.")
            return "FAILED"

    def _run_step(self, cluster_id, step):
        step_list = self.connection.add_jobflow_steps(cluster_id, [step])
        step_id = step_list.stepids[0].value

        logging.info("Starting step " + step_id + " in cluster " + cluster_id + ". Please be patient. Check the progress of the job in your AWS Console")

        # Checking the state of the step
        state = self._find_step_state(cluster_id, step_id)
        while state != u'NOT_FOUND' and state != u'ERROR' and state != u'FAILED' and state!=u'COMPLETED':
            #sleeping to recheck for status.
            time.sleep(int(self.step_status_wait))
            state = self._find_step_state(cluster_id, step_id)
            logging.info("Starting step " + step_id + " in cluster " + cluster_id + ". Status: " + state)

        if state == u'FAILED':
            logging.error("Step " + step_id + " failed in cluster: " + cluster_id)
            return "FAILED"
        if state == u'NOT_FOUND':
            logging.error("Step " + step_id + " could not be found in cluster: " + cluster_id)
            return "NOT_FOUND"
        if state == u'ERROR':
            logging.error("Step " + step_id + " produced an error in _find_step_state in cluster: " + cluster_id)
            return "ERROR"

        #Check if the state is WAITING. Then launch the next steps
        if state == u'COMPLETED':
            #Finding the master node dns of EMR cluster
            logging.info("Step " + step_id + " succesfully completed in cluster: " + cluster_id)
            return step_id


    def _find_step_state(self, cluster_id, step_id):
        try:
            step_summary_list = self.connection.list_steps(cluster_id)
            for step_summary in step_summary_list.steps:
                if step_summary.id == step_id:
                    return step_summary.status.state
            return "NOT_FOUND"
        except:
            return "ERROR"

    #Method for terminating the EMR cluster
    def terminate_cluster(self, cluster_id):
        self.connection.terminate_jobflow(cluster_id)
Exemplo n.º 11
0
    output='s3n://bia660-winter/output')

# <codecell>

jobid = emrcon.run_jobflow(name='Alcohol Religion 6',
                           log_uri='s3://bia660-winter/logfiles',
                           steps=[step],
                           num_instances=4)

# <codecell>

jobid

# <codecell>

status = emrcon.describe_jobflow(jobid)
print status.state

# <codecell>

# Using EMR's wordcount example
step = StreamingStep(
    name='Preview',
    mapper='s3n://wambia660fall2013/preview_mapper.py',
    reducer='aggregate',
    input=
    's3://datasets.elasticmapreduce/ngrams/books/20090715/eng-us-all/3gram/',
    output='s3n://wambia660fall2013/output/preview_output')

# <codecell>
Exemplo n.º 12
0
class EmrClient(object):

    # The Hadoop version to use
    HADOOP_VERSION = '1.0.3'

    # The AMI version to use
    AMI_VERSION = '2.4.7'

    # Interval to wait between polls to EMR cluster in seconds
    CLUSTER_OPERATION_RESULTS_POLLING_SECONDS = 10

    # Timeout for EMR creation and ramp up in seconds
    CLUSTER_OPERATION_RESULTS_TIMEOUT_SECONDS = 60 * 30

    def __init__(self,
                 region_name='us-east-1',
                 aws_access_key_id=None,
                 aws_secret_access_key=None):

        # If the access key is not specified, get it from the luigi config.cfg file
        if not aws_access_key_id:
            aws_access_key_id = luigi.configuration.get_config().get(
                'aws', 'aws_access_key_id')

        if not aws_secret_access_key:
            aws_secret_access_key = luigi.configuration.get_config().get(
                'aws', 'aws_secret_access_key')

        # Create the region in which to run
        region_endpoint = u'elasticmapreduce.%s.amazonaws.com' % (region_name)
        region = RegionInfo(name=region_name, endpoint=region_endpoint)

        self.emr_connection = EmrConnection(
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            region=region)

    def launch_emr_cluster(
        self,
        cluster_name,
        log_uri,
        ec2_keyname=None,
        master_type='m1.small',
        core_type='m1.small',
        num_instances=2,
        hadoop_version='1.0.3',
        ami_version='2.4.7',
    ):

        # TODO Remove
        # install_pig_step = InstallPigStep()

        jobflow_id = self.emr_connection.run_jobflow(
            name=cluster_name,
            log_uri=log_uri,
            ec2_keyname=ec2_keyname,
            master_instance_type=master_type,
            slave_instance_type=core_type,
            num_instances=num_instances,
            keep_alive=True,
            enable_debugging=True,
            hadoop_version=EmrClient.HADOOP_VERSION,
            steps=[],
            ami_version=EmrClient.AMI_VERSION)

        # Log important information
        status = self.emr_connection.describe_jobflow(jobflow_id)

        logger.info('Creating new cluster %s with following details' %
                    status.name)
        logger.info('jobflow ID:\t%s' % status.jobflowid)
        logger.info('Log URI:\t%s' % status.loguri)
        logger.info('Master Instance Type:\t%s' % status.masterinstancetype)

        # A cluster of size 1 does not have any slave instances
        if hasattr(status, 'slaveinstancetype'):
            logger.info('Slave Instance Type:\t%s' % status.slaveinstancetype)

        logger.info('Number of Instances:\t%s' % status.instancecount)
        logger.info('Hadoop Version:\t%s' % status.hadoopversion)
        logger.info('AMI Version:\t%s' % status.amiversion)
        logger.info('Keep Alive:\t%s' % status.keepjobflowalivewhennosteps)

        return self._poll_until_cluster_ready(jobflow_id)

    def add_pig_step(self,
                     jobflow_id,
                     pig_file,
                     name='Pig Script',
                     pig_versions='latest',
                     pig_args=[]):

        pig_step = PigStep(
            name=name,
            pig_file=pig_file,
            pig_versions=pig_versions,
            pig_args=pig_args,
            # action_on_failure='CONTINUE',
        )

        self.emr_connection.add_jobflow_steps(jobflow_id, [pig_step])

        # Poll until the cluster is done working
        return self._poll_until_cluster_ready(jobflow_id)

    def shutdown_emr_cluster(self, jobflow_id):

        self.emr_connection.terminate_jobflow(jobflow_id)
        return self._poll_until_cluster_shutdown(jobflow_id)

    def get_jobflow_id(self):
        # Get the id of the cluster that is WAITING for work
        return self.emr_connection.list_clusters(
            cluster_states=['WAITING']).clusters[0].id

    def get_master_dns(self):
        """
        Get the master node's public address
        """
        # Get the jobflow ID
        jobflow_id = self.get_master_dns()

        # Use the jobflow ID to get the status
        status = self.emr_connection.describe_jobflow(jobflow_id)

        # Return the master's public dns
        return status.masterpublicdnsname

    def _poll_until_cluster_ready(self, jobflow_id):

        start_time = time.time()

        is_cluster_ready = False

        while (not is_cluster_ready) and (
                time.time() - start_time <
                EmrClient.CLUSTER_OPERATION_RESULTS_TIMEOUT_SECONDS):
            # Get the state
            state = self.emr_connection.describe_jobflow(jobflow_id).state

            if state == u'WAITING':
                logger.info('Cluster intialized and is WAITING for work')
                is_cluster_ready = True

            elif (state == u'COMPLETED') or \
                 (state == u'SHUTTING_DOWN') or \
                 (state == u'FAILED') or \
                 (state == u'TERMINATED'):

                logger.error('Error starting cluster; status: %s' % state)

                # Poll until cluster shutdown
                self._poll_until_cluster_shutdown(jobflow_id)
                raise RuntimeError('Error, cluster failed to start')

            else:
                logger.debug('Cluster state: %s' % state)
                time.sleep(EmrClient.CLUSTER_OPERATION_RESULTS_POLLING_SECONDS)

        if not is_cluster_ready:
            # TODO shutdown cluster
            raise RuntimeError(
                'Timed out waiting for EMR cluster to be active')

        return jobflow_id

    def _poll_until_cluster_shutdown(self, jobflow_id):
        start_time = time.time()

        is_cluster_shutdown = False

        while (not is_cluster_shutdown) and (
                time.time() - start_time <
                EmrClient.CLUSTER_OPERATION_RESULTS_TIMEOUT_SECONDS):
            # Get the state
            state = self.emr_connection.describe_jobflow(jobflow_id).state

            if (state == u'TERMINATED') or (state == u'COMPLETED'):
                logger.info('Cluster successfully shutdown with status: %s' %
                            state)
                return False
            elif state == u'FAILED':
                logger.error('Cluster shutdown with FAILED status')
                return False
            else:
                logger.debug('Cluster state: %s' % state)
                time.sleep(EmrClient.CLUSTER_OPERATION_RESULTS_POLLING_SECONDS)

        if not is_cluster_shutdown:
            # TODO shutdown cluster
            raise RuntimeError(
                'Timed out waiting for EMR cluster to shut down')

        return True
Exemplo n.º 13
0
class Rankmaniac:
    '''Rankmaniac Wrapper

    This class provides a simple wrapper around the Amazon Web Services SDK.
    It should provide all the functionality required in terms of MapReduce,
    so students don't need to worry about learning the EMR and S3 API.
    '''
    def __init__(self, team_id, access_key, secret_key):
        '''Rankmaniac class constructor

        Creates a new instance of the Rankmaniac Wrapper for a specific
        team.

        Arguments:
            team_id         string      the team ID.
            access_key      string      AWS access key.
            secret_key      string      AWS secret key.
        '''

        self.s3_bucket = 'cs144caltech'

        self.team_id = team_id
        self.emr_conn = EmrConnection(access_key, secret_key)
        self.s3_conn = S3Connection(access_key, secret_key)
        self.job_id = None

    def __del__(self):

        if self.job_id:
            self.terminate_job()

    def submit_job(self,
                   mapper,
                   reducer,
                   input,
                   output,
                   num_map=1,
                   num_reduce=1):
        '''Submit a new MapReduce job

        Submits a new MapReduce job with a single step. To add more steps,
        call add_step. To terminate this job, call terminate_job.
        
        Arguments:
            mapper          string      path to the mapper, relative to
                                        your data directory.
            reducer         string      path to the reducer, relative to
                                        your data directory.
            input           string      path to the input data, relative to
                                        your data directory. To specify a
                                        directory as input, ensure your path
                                        contains a trailing /.
            output          string      path to the desired output directory.
            num_map         int         number of map tasks for this job.
            num_reduce      int         number of reduce tasks for this job.
        '''

        if self.job_id:
            raise Exception('There currently already exists a running job.')

        job_name = self._make_name()
        step = self._make_step(mapper, reducer, input, output, num_map,
                               num_reduce)
        self.job_id = \
          self.emr_conn.run_jobflow(name=job_name,
                                    steps=[step],
                                    num_instances=1,
                                    log_uri=self._get_s3_url() + 'job_logs',
                                    keep_alive=True)

    def terminate_job(self):
        '''Terminate a running MapReduce job

        Stops the current running job.
        '''

        if not self.job_id:
            raise Exception('No job is running.')

        self.emr_conn.terminate_jobflow(self.job_id)
        self.job_id = None

    def get_job(self):
        '''Gets the running job details

        Returns:
            JobFlow object with relevant fields:
                state           string      the state of the job flow, either
                                            COMPLETED | FAILED | TERMINATED
                                            RUNNING | SHUTTING_DOWN | STARTING
                                            WAITING | BOOTSTRAPPING
                steps           list(Step)  a list of the step details in the
                                            workflow. A Step has the relevant
                                            fields:
                                                status              string
                                                startdatetime       string
                                                enddatetime         string

        Note: Amazon has an upper-limit on the frequency with which you can
              call this function; we have had success with calling it one
              every 10 seconds.
        '''

        if not self.job_id:
            raise Exception('No job is running.')

        return self.emr_conn.describe_jobflow(self.job_id)

    def add_step(self,
                 mapper,
                 reducer,
                 input,
                 output,
                 num_map=1,
                 num_reduce=1):
        '''Add a step to an existing job

        Adds a new step to an already running job flow.

        Note: any given job flow can support up to 256 steps. To workaround
              this limitation, you can always choose to submit a new job
              once the current job completes.
        
        Arguments:
            mapper          string      path to the mapper, relative to
                                        your data directory.
            reducer         string      path to the reducer, relative to
                                        your data directory.
            input           string      path to the input data, relative to
                                        your data directory. To specify a
                                        directory as input, ensure your path
                                        contains a trailing /.
            output          string      path to the desired output directory.
        '''

        if not self.job_id:
            raise Exception('No job is running.')

        step = self._make_step(mapper, reducer, input, output, num_map,
                               num_reduce)
        self.emr_conn.add_jobflow_steps(self.job_id, [step])

    def upload(self, in_dir='data'):
        '''Upload local data to S3

        Uploads the files in the specified directory to S3, where it can be
        used by Elastic MapReduce.

        Note: this method only uploads files in the root of in_dir. It does
              NOT scan through subdirectories.

        Arguments:
            in_dir          string      optional, defaults to 'data'. Uses
                                        this directory as the base directory
                                        from which to upload.
        '''

        bucket = self.s3_conn.get_bucket(self.s3_bucket)
        keys = bucket.list(prefix='%s/' % self.team_id)
        bucket.delete_keys(map(lambda k: k.name, keys))

        to_upload = [(os.path.join(in_dir, file_name),
                      os.path.join(self.team_id, file_name))
                     for file_name in os.listdir(in_dir)
                     if os.path.isfile(os.path.join(in_dir, file_name))]

        for l, r in to_upload:
            key = Key(bucket)
            key.key = r
            key.set_contents_from_filename(l)

    def download(self, out_dir='data'):
        '''Download S3 data to local directory

        Downloads S3 data to the specified directory.

        Note: this method DOES download the entire directory hierarchy as
              given by S3. It will create subdirectories as needed.

        Arguments:
            out_dir         string      optional, defaults to 'data'. Downloads
                                        files to this directory.
        '''

        bucket = self.s3_conn.get_bucket(self.s3_bucket)
        keys = bucket.list(prefix='%s/' % self.team_id)
        for key in keys:
            fp = os.path.join(out_dir, '/'.join(key.name.split('/')[1:]))
            fp_dir = os.path.dirname(fp)
            if os.path.exists(fp):
                os.remove(fp)
            elif not os.path.exists(fp_dir):
                os.makedirs(fp_dir)
            key.get_contents_to_filename(fp)

    def _make_name(self):

        return '%s-%s' % (self.team_id,
                          strftime('%m-%d-%Y %H:%M:%s', localtime()))

    def _make_step(self, mapper, reducer, input, output, nm=1, nr=1):

        job_name = self._make_name()
        team_s3 = self._get_s3_url()

        bucket = self.s3_conn.get_bucket(self.s3_bucket)
        keys = bucket.list(prefix='%s/%s' % (self.team_id, output))
        bucket.delete_keys(map(lambda k: k.name, keys))

        return \
            StreamingStep(name=job_name,
                          step_args=
                              ['-jobconf', 'mapred.map.tasks=%d' % nm,
                               '-jobconf', 'mapred.reduce.tasks=%d' % nr],
                          mapper=team_s3 + mapper,
                          reducer=team_s3 + reducer,
                          input=team_s3 + input,
                          output=team_s3 + output)

    def _get_s3_url(self):

        return 's3n://%s/%s/' % (self.s3_bucket, self.team_id)
Exemplo n.º 14
0
class EmrClient(object):


    # The Hadoop version to use
    HADOOP_VERSION = '1.0.3'

    # The AMI version to use
    AMI_VERSION = '2.4.7'
 
    # Interval to wait between polls to EMR cluster in seconds
    CLUSTER_OPERATION_RESULTS_POLLING_SECONDS = 10
 
    # Timeout for EMR creation and ramp up in seconds
    CLUSTER_OPERATION_RESULTS_TIMEOUT_SECONDS = 60 * 30
 
    def __init__(self, region_name='us-east-1', aws_access_key_id=None, aws_secret_access_key=None):
 
        # If the access key is not specified, get it from the luigi config.cfg file
        if not aws_access_key_id:
            aws_access_key_id = luigi.configuration.get_config().get('aws', 'aws_access_key_id')
 
        if not aws_secret_access_key:
            aws_secret_access_key = luigi.configuration.get_config().get('aws', 'aws_secret_access_key')
 
 
        # Create the region in which to run
        region_endpoint = u'elasticmapreduce.%s.amazonaws.com' % (region_name)
        region = RegionInfo(name=region_name, endpoint=region_endpoint)
 
        self.emr_connection = EmrConnection(aws_access_key_id=aws_access_key_id,
                                            aws_secret_access_key=aws_secret_access_key,
                                            region=region)
 
    def launch_emr_cluster(self, cluster_name, log_uri, ec2_keyname=None, master_type='m1.small', core_type='m1.small', num_instances=2, hadoop_version='1.0.3', ami_version='2.4.7', ):
 
        # TODO Remove
        # install_pig_step = InstallPigStep()
 
        jobflow_id = self.emr_connection.run_jobflow(name=cluster_name,
                              log_uri=log_uri,
                              ec2_keyname=ec2_keyname,
                              master_instance_type=master_type,
                              slave_instance_type=core_type,
                              num_instances=num_instances,
                              keep_alive=True,
                              enable_debugging=True,
                              hadoop_version=EmrClient.HADOOP_VERSION,
                              steps=[], 
                              ami_version=EmrClient.AMI_VERSION)
 
        # Log important information
        status = self.emr_connection.describe_jobflow(jobflow_id)

        logger.info('Creating new cluster %s with following details' % status.name)
        logger.info('jobflow ID:\t%s' % status.jobflowid)
        logger.info('Log URI:\t%s' % status.loguri)
        logger.info('Master Instance Type:\t%s' % status.masterinstancetype)
        
        # A cluster of size 1 does not have any slave instances
        if hasattr(status, 'slaveinstancetype'):
            logger.info('Slave Instance Type:\t%s' % status.slaveinstancetype)
        
        logger.info('Number of Instances:\t%s' % status.instancecount)
        logger.info('Hadoop Version:\t%s' % status.hadoopversion)
        logger.info('AMI Version:\t%s' % status.amiversion)
        logger.info('Keep Alive:\t%s' % status.keepjobflowalivewhennosteps)
 
        return self._poll_until_cluster_ready(jobflow_id)
 
 
    def add_pig_step(self, jobflow_id, pig_file, name='Pig Script', pig_versions='latest', pig_args=[]): 

        pig_step = PigStep(name=name,
                           pig_file=pig_file,
                           pig_versions=pig_versions,
                           pig_args=pig_args,
                           # action_on_failure='CONTINUE',
                       )

        self.emr_connection.add_jobflow_steps(jobflow_id, [pig_step])

        # Poll until the cluster is done working        
        return self._poll_until_cluster_ready(jobflow_id)


    def shutdown_emr_cluster(self, jobflow_id):
 
        self.emr_connection.terminate_jobflow(jobflow_id)
        return self._poll_until_cluster_shutdown(jobflow_id)
 
    def get_jobflow_id(self):
        # Get the id of the cluster that is WAITING for work
        return self.emr_connection.list_clusters(cluster_states=['WAITING']).clusters[0].id
 
    def get_master_dns(self):
        """
        Get the master node's public address
        """
        # Get the jobflow ID
        jobflow_id = self.get_master_dns()

        # Use the jobflow ID to get the status
        status = self.emr_connection.describe_jobflow(jobflow_id)

        # Return the master's public dns
        return status.masterpublicdnsname

    def _poll_until_cluster_ready(self, jobflow_id):
 
        start_time = time.time()
 
        is_cluster_ready = False
 
        while (not is_cluster_ready) and (time.time() - start_time < EmrClient.CLUSTER_OPERATION_RESULTS_TIMEOUT_SECONDS):
            # Get the state
            state = self.emr_connection.describe_jobflow(jobflow_id).state

            if state == u'WAITING':
                logger.info('Cluster intialized and is WAITING for work')
                is_cluster_ready = True

            elif (state == u'COMPLETED') or \
                 (state == u'SHUTTING_DOWN') or \
                 (state == u'FAILED') or \
                 (state == u'TERMINATED'):
                
                logger.error('Error starting cluster; status: %s' % state)

                # Poll until cluster shutdown
                self._poll_until_cluster_shutdown(jobflow_id)
                raise RuntimeError('Error, cluster failed to start')

            else:
                logger.debug('Cluster state: %s' % state)
                time.sleep(EmrClient.CLUSTER_OPERATION_RESULTS_POLLING_SECONDS)

 
        if not is_cluster_ready:
            # TODO shutdown cluster
            raise RuntimeError('Timed out waiting for EMR cluster to be active')
 
        return jobflow_id
 
 
    def _poll_until_cluster_shutdown(self, jobflow_id):
        start_time = time.time()
 
        is_cluster_shutdown = False
 
        while (not is_cluster_shutdown) and (time.time() - start_time < EmrClient.CLUSTER_OPERATION_RESULTS_TIMEOUT_SECONDS):
            # Get the state
            state = self.emr_connection.describe_jobflow(jobflow_id).state

            if (state == u'TERMINATED') or (state == u'COMPLETED'):
                logger.info('Cluster successfully shutdown with status: %s' % state)
                return False
            elif state == u'FAILED':
                logger.error('Cluster shutdown with FAILED status')
                return False
            else:
                logger.debug('Cluster state: %s' % state)
                time.sleep(EmrClient.CLUSTER_OPERATION_RESULTS_POLLING_SECONDS)

        if not is_cluster_shutdown:
            # TODO shutdown cluster
            raise RuntimeError('Timed out waiting for EMR cluster to shut down')
 
        return True
Exemplo n.º 15
0
files_short="""split_A.txt
split_B.txt
split_C.txt
split_D.txt
split_E.txt
split_F.txt
split_G.txt
split_H.txt
split_I.txt
split_J.txt
split_K.txt
split_L.txt
split_M.txt""".split('\n')

input_files=['s3n://smalldata/'+f for f in files_short]


step = StreamingStep(name='Inverted Index ',
                      mapper='s3n://css739/invIndex/inv-index-mapper.py',
                      reducer='s3n://css739/invIndex/inv-index-mapper.py',
                      input=input_files,
                      #input='s3n://smalldata/wikipedia_titles.txt',
                      output='s3n://css739/invIndex/invindex_output2')
                      #cache_files=['s3n://css739/invindex/english_stoplist.py'])
                      
                      
jobid = conn.run_jobflow(name='Inverted Index', log_uri='s3n://css739/invIndex/jobflow_logs',steps=[step])

conn.describe_jobflow(jobid).state
Exemplo n.º 16
0
def main():
    aws_access = sys.argv[1]
    aws_secert = sys.argv[2]
    jar_path = sys.argv[3]
    input_filename = sys.argv[4]
    output_filename = sys.argv[5]
    nodes = int(sys.argv[6])
    slots = 7 * nodes
    s3_in = sys.argv[7] + "_" + str(os.getpid()) + "_in"
    s3_out= sys.argv[7] + "_" + str(os.getpid()) + "_out"
    s3_asm= sys.argv[7] + "_" + str(os.getpid()) + "_asm"
    readlen = int(sys.argv[8])
    kmer= int(sys.argv[9])


    # connect to S3
    s3_conn = S3Connection(aws_access, aws_secert)
    mybucket = s3_conn.create_bucket(aws_access.lower())
    mybucket = s3_conn.get_bucket(aws_access.lower(), validate=False)
    print "\nConnection created"
    # upload  data
    k = Key(mybucket)
    k.key = 'ReadStackCorrector.jar'
    k.set_contents_from_filename(jar_path + 'ReadStackCorrector.jar')
    #k.key = 'CloudBrush.jar'
    k.key = 'CloudbrushGPU.jar'
    k.set_contents_from_filename(jar_path + 'CloudbrushGPU-GPU.jar')

    # uploading file parallel
    #k.key = s3_in
    #k.set_contents_from_filename(input_filename)
    print "\nStarting Upload"
    s3_path = 's3://%s/%s' % (aws_access.lower(), s3_in)
    upload_cmd = 'python %s/s3-mp-upload.py %s %s %s %s -f 2>&1' % (jar_path, input_filename, s3_path, aws_access, aws_secert)
    proc = subprocess.call( args=upload_cmd, shell=True )

    #k.key = s3_out
    #k.delete()
    # connect to EMR    InstanceGroup(nodes, 'CORE', 'c1.xlarge', 'ON_DEMAND', '[email protected]', '0.4')
    emr_conn = EmrConnection(aws_access, aws_secert)
    instance_groups = [
        InstanceGroup(1, 'MASTER', 'm1.medium', 'ON_DEMAND', '[email protected]', '0.4'),
        InstanceGroup(nodes, 'CORE', 'g2.2xlarge', 'ON_DEMAND', '[email protected]', '0.4')
        ]

    # perform CloudRS
    step1 = JarStep(name='CloudRS',
                   jar='s3n://%s/ReadStackCorrector.jar' % (aws_access.lower()),
                   step_args = ['-in', 's3n://%s/%s' % (aws_access.lower(), s3_in), '-out', s3_out, '-slots', slots, '-javaopts', '-Xmx960m'])

    # perform CloudBrush
    step2 = JarStep(name='CloudBrush',
                   jar='s3n://%s/CloudbrushGPU-GPU.jar' % (aws_access.lower()),
                   step_args = ['-reads', s3_out, '-asm', s3_asm, '-readlen', readlen, '-k', kmer, '-slots', slots, '-javaopts', '-Xmx960m'])

    # copy from hdfs to S3
    k.key = s3_asm
    step3 = JarStep(name='S3DistCp',
                    jar='/home/hadoop/lib/emr-s3distcp-1.0.jar', #'s3://elasticmapreduce/libs/s3distcp/role/s3distcp.jar',
                    step_args = ['--src', 'hdfs:///user/hadoop/%s' % s3_asm , '--dest', 's3://%s/%s' % (aws_access.lower(), s3_asm), '--groupBy', '.*(part).*'])
    jobid = emr_conn.run_jobflow(name='CloudBrush',
                             log_uri='s3://%s/jobflow_logs' % aws_access.lower(),
                             ami_version='latest',
                             hadoop_version='2.4.0', #'0.20.205'
                             keep_alive=False,
                             visible_to_all_users=True,
                             steps=[step1,step2,step3],
                             instance_groups = instance_groups)

    state = emr_conn.describe_jobflow(jobid).state
    print "job state = ", state
    print "job id = ", jobid
    while state != u'COMPLETED':
        print time.asctime(time.localtime())
        time.sleep(30)
        state = emr_conn.describe_jobflow(jobid).state
        print "job state = ", state
        print "job id = ", jobid
        if state == u'FAILED':
            print 'FAILED!!!!'
            break

    # download file parallel
    #k.key = "%s/part0" % (s3_asm)
    #k.get_contents_to_filename(output_filename)
    if state == u'COMPLETED':
        s3_path  = 's3://%s/%s/part0' % (aws_access.lower(), s3_asm)
        download_cmd = 'python %s/s3-mp-download.py %s %s %s %s -f 2>&1' % (jar_path, s3_path, output_filename, aws_access, aws_secert)
        proc = subprocess.call( args=download_cmd, shell=True )


        # delete file in S3
        k.key = s3_in
        k.delete()
        k.key = "%s/part0" % (s3_asm)
        k.delete()
Exemplo n.º 17
0
class Rankmaniac:
    """
    (wrapper class)

    This class presents a simple wrapper around the AWS SDK. It strives
    to provide all the functionality required to run map-reduce
    (Hadoop) on Amazon. This way the students do not need to worry about
    learning the API for Amazon S3 and EMR, and instead can focus on
    computing pagerank quickly!
    """

    DefaultRegionName = 'us-west-2'
    DefaultRegionEndpoint = 'elasticmapreduce.us-west-2.amazonaws.com'

    def __init__(self, team_id, access_key, secret_key,
                 bucket='cs144students'):
        """
        (constructor)

        Creates a new instance of the Rankmaniac class for a specific
        team using the provided credentials.

        Arguments:
            team_id       <str>     the team identifier, which may be
                                    differ slightly from the actual team
                                    name.

            access_key    <str>     the AWS access key identifier.
            secret_key    <str>     the AWS secret acess key.

        Keyword arguments:
            bucket        <str>     the S3 bucket name.
        """

        region = RegionInfo(None, self.DefaultRegionName,
                            self.DefaultRegionEndpoint)

        self._s3_bucket = bucket
        self._s3_conn = S3Connection(access_key, secret_key)
        self._emr_conn = EmrConnection(access_key, secret_key, region=region)

        self.team_id = team_id
        self.job_id = None

        self._reset()
        self._num_instances = 1

    def _reset(self):
        """
        Resets the internal state of the job and submission.
        """

        self._iter_no = 0
        self._infile = None
        self._last_outdir = None

        self._last_process_step_iter_no = -1
        self._is_done = False

    def __del__(self):
        """
        (destructor)

        Terminates the map-reduce job if any, and closes the connections
        to Amazon S3 and EMR.
        """

        if self.job_id is not None:
            self.terminate()

        self._s3_conn.close()
        self._emr_conn.close()

    def __enter__(self):
        """
        Used for `with` syntax. Simply returns this instance since the
        set-up has all been done in the constructor.
        """

        return self

    def __exit__(self, type, value, traceback):
        """
        Refer to __del__().
        """

        self.__del__()
        return False # do not swallow any exceptions

    def upload(self, indir='data'):
        """
        Uploads the local data to Amazon S3 under the configured bucket
        and key prefix (the team identifier). This way the code can be
        accessed by Amazon EMR to compute pagerank.

        Keyword arguments:
            indir       <str>       the base directory from which to
                                    upload contents.

        Special notes:
            This method only uploads **files** in the specified
            directory. It does not scan through subdirectories.

            WARNING! This method removes all previous (or ongoing)
            submission results, so it is unsafe to call while a job is
            already running (and possibly started elsewhere).
        """

        if self.job_id is not None:
            raise RankmaniacError('A job is already running.')

        bucket = self._s3_conn.get_bucket(self._s3_bucket)

        # Clear out current bucket contents for team
        keys = bucket.list(prefix=self._get_keyname())
        bucket.delete_keys(keys)

        for filename in os.listdir(indir):
            relpath = os.path.join(indir, filename)
            if os.path.isfile(relpath):
                keyname = self._get_keyname(filename)
                key = bucket.new_key(keyname)
                key.set_contents_from_filename(relpath)

    def set_infile(self, filename):
        """
        Sets the data file to use for the first iteration of the
        pagerank step in the map-reduce job.
        """

        if self.job_id is not None:
            raise RankmaniacError('A job is already running.')

        self._infile = filename

    def do_iter(self, pagerank_mapper, pagerank_reducer,
                process_mapper, process_reducer,
                pagerank_output=None, process_output=None,
                num_pagerank_mappers=1, num_pagerank_reducers=1):
        """
        Adds a pagerank step and a process step to the current job.
        """

        num_process_mappers = 1
        num_process_reducers = 1

        if self._iter_no == 0:
            pagerank_input = self._infile
        elif self._iter_no > 0:
            pagerank_input = self._last_outdir

        if pagerank_output is None:
            pagerank_output = self._get_default_outdir('pagerank')

        # Output from the pagerank step becomes input to process step
        process_input = pagerank_output

        if process_output is None:
            process_output = self._get_default_outdir('process')

        pagerank_step = self._make_step(pagerank_mapper, pagerank_reducer,
                                        pagerank_input, pagerank_output,
                                        num_pagerank_mappers,
                                        num_pagerank_reducers)

        process_step = self._make_step(process_mapper, process_reducer,
                                       process_input, process_output,
                                       num_process_mappers,
                                       num_process_reducers)

        steps = [pagerank_step, process_step]
        if self.job_id is None:
            self._submit_new_job(steps)
        else:
            self._emr_conn.add_jobflow_steps(self.job_id, steps)

        # Store `process_output` directory so it can be used in
        # subsequent iteration
        self._last_outdir = process_output
        self._iter_no += 1

    def is_done(self):
        """
        Returns `True` if the map-reduce job is done, and `False`
        otherwise.

        For all process-step output files that have not been fetched,
        gets the first part of the output file, and checks whether its
        contents begins with the string 'FinalRank'.

        Special notes:
            WARNING! The usage of this method in your code requires that
            that you used the default output directories in all calls
            to do_iter().
        """

        # Cache the result so we can return immediately without hitting
        # any of the Amazon APIs
        if self._is_done:
            return True

        iter_no = self._get_last_process_step_iter_no()
        if iter_no < 0:
            return False

        while self._last_process_step_iter_no < iter_no:
            self._last_process_step_iter_no += 1
            i = self._last_process_step_iter_no

            outdir = self._get_default_outdir('process', iter_no=i)
            keyname = self._get_keyname(outdir, 'part-00000')

            bucket = self._s3_conn.get_bucket(self._s3_bucket)
            key = Key(bucket=bucket, name=keyname)
            contents = key.next() # get first chunk of the output file

            if contents.startswith('FinalRank'):
                self._is_done = True # cache result
                break

        return self._is_done

    def is_alive(self):
        """
        Checks whether the jobflow has completed, failed, or been
        terminated.

        Special notes:
            WARNING! This method should only be called **after**
            is_done() in order to be able to distinguish between the
            cases where the map-reduce job has outputted 'FinalRank'
            on its final iteration and has a 'COMPLETED' state.
        """

        jobflow = self.describe()
        if jobflow.state in ('COMPLETED', 'FAILED', 'TERMINATED'):
            return False

        return True

    def terminate(self):
        """
        Terminates a running map-reduce job.
        """

        if not self.job_id:
            raise RankmaniacError('No job is running.')

        self._emr_conn.terminate_jobflow(self.job_id)
        self.job_id = None

        self._reset()

    def download(self, outdir='results'):
        """
        Downloads the results from Amazon S3 to the local directory.

        Keyword arguments:
            outdir      <str>       the base directory to which to
                                    download contents.

        Special notes:
            This method downloads all keys (files) from the configured
            bucket for this particular team. It creates subdirectories
            as needed.
        """

        bucket = self._s3_conn.get_bucket(self._s3_bucket)
        keys = bucket.list(prefix=self._get_keyname())
        for key in keys:
            keyname = key.name
            # Ignore folder keys
            if '$' not in keyname:
                suffix = keyname.split('/')[1:] # removes team identifier
                filename = os.path.join(outdir, *suffix)
                dirname = os.path.dirname(filename)

                if not os.path.exists(dirname):
                    os.makedirs(dirname)

                key.get_contents_to_filename(filename)

    def describe(self):
        """
        Gets the current map-reduce job details.

        Returns a boto.emr.emrobject.JobFlow object.

        Special notes:
            The JobFlow object has the following relevant fields.
                state       <str>           the state of the job flow,
                                            either COMPLETED
                                                 | FAILED
                                                 | TERMINATED
                                                 | RUNNING
                                                 | SHUTTING_DOWN
                                                 | STARTING
                                                 | WAITING

                steps       <list(boto.emr.emrobject.Step)>
                            a list of the step details in the workflow.

            The Step object has the following relevant fields.
                state               <str>       the state of the step.

                startdatetime       <str>       the start time of the
                                                job.

                enddatetime         <str>       the end time of the job.

            WARNING! Amazon has an upper-limit on the frequency with
            which you can call this method; we have had success with
            calling it at most once every 10 seconds.
        """

        if not self.job_id:
            raise RankmaniacError('No job is running.')

        return self._emr_conn.describe_jobflow(self.job_id)

    def _get_last_process_step_iter_no(self):
        """
        Returns the most recently process-step of the job flow that has
        been completed.
        """

        steps = self.describe().steps
        i = 1

        while i < len(steps):
            step = steps[i]
            if step.state != 'COMPLETED':
                break

            i += 2

        return i / 2 - 1

    def _get_default_outdir(self, name, iter_no=None):
        """
        Returns the default output directory, which is 'iter_no/name/'.
        """

        if iter_no is None:
            iter_no = self._iter_no

        # Return iter_no/name/ **with** the trailing slash
        return '%s/%s/' % (iter_no, name)

    def _submit_new_job(self, steps):
        """
        Submits a new job to run on Amazon EMR.
        """

        if self.job_id is not None:
            raise RankmaniacError('A job is already running.')

        job_name = self._make_name()
        num_instances = self._num_instances
        log_uri = self._get_s3_team_uri('job_logs')
        self.job_id = self._emr_conn.run_jobflow(name=job_name,
                                                 steps=steps,
                                                 num_instances=num_instances,
                                                 log_uri=log_uri)

    def _make_step(self, mapper, reducer, input, output,
                   num_mappers=1, num_reducers=1):
        """
        Returns a new step that runs the specified mapper and reducer,
        reading from the specified input and writing to the specified
        output.
        """

        bucket = self._s3_conn.get_bucket(self._s3_bucket)

        # Clear out current bucket/output contents for team
        keys = bucket.list(prefix=self._get_keyname(output))
        bucket.delete_keys(keys)

        step_name = self._make_name()
        step_args = ['-jobconf', 'mapred.map.tasks=%d' % (num_mappers),
                     '-jobconf', 'mapred.reduce.tasks=%d' % (num_reducers)]

        return StreamingStep(name=step_name,
                            step_args=step_args,
                            mapper=self._get_s3_team_uri(mapper),
                            reducer=self._get_s3_team_uri(reducer),
                            input=self._get_s3_team_uri(input),
                            output=self._get_s3_team_uri(output))

    def _make_name(self):
        return strftime('%%s %m-%d-%Y %H:%M:%S', localtime()) % (self.team_id)

    def _get_keyname(self, *args):
        """
        Returns the key name to use in the grading bucket (for the
        particular team).

            'team_id/...'
        """

        return '%s/%s' % (self.team_id, '/'.join(args))

    def _get_s3_team_uri(self, *args):
        """
        Returns the Amazon S3 URI for the team submissions.
        """

        return 's3n://%s/%s' % (self._s3_bucket, self._get_keyname(*args))
Exemplo n.º 18
0
class Rankmaniac:
    '''Rankmaniac Wrapper

    This class provides a simple wrapper around the Amazon Web Services SDK.
    It should provide all the functionality required in terms of MapReduce,
    so students don't need to worry about learning the EMR and S3 API.
    '''

    def __init__(self, team_id, access_key, secret_key):
        '''Rankmaniac class constructor

        Creates a new instance of the Rankmaniac Wrapper for a specific
        team.

        Arguments:
            team_id         string      the team ID.
            access_key      string      AWS access key.
            secret_key      string      AWS secret key.
        '''

        self.s3_bucket = 'cs144caltech'

        self.team_id = team_id
        self.emr_conn = EmrConnection(access_key, secret_key)
        self.s3_conn = S3Connection(access_key, secret_key)
        self.job_id = None

    def __del__(self):

        if self.job_id:
            self.terminate_job()

    def submit_job(self, mapper, reducer, input, output, num_map=1, 
                   num_reduce=1):
        '''Submit a new MapReduce job

        Submits a new MapReduce job with a single step. To add more steps,
        call add_step. To terminate this job, call terminate_job.
        
        Arguments:
            mapper          string      path to the mapper, relative to
                                        your data directory.
            reducer         string      path to the reducer, relative to
                                        your data directory.
            input           string      path to the input data, relative to
                                        your data directory. To specify a
                                        directory as input, ensure your path
                                        contains a trailing /.
            output          string      path to the desired output directory.
            num_map         int         number of map tasks for this job.
            num_reduce      int         number of reduce tasks for this job.
        '''

        if self.job_id:
            raise Exception('There currently already exists a running job.')
        
        job_name = self._make_name()
        step = self._make_step(mapper, reducer, input, output, num_map, 
                               num_reduce)
        self.job_id = \
          self.emr_conn.run_jobflow(name=job_name,
                                    steps=[step],
                                    num_instances=1,
                                    log_uri=self._get_s3_url() + 'job_logs',
                                    keep_alive=True)

    def terminate_job(self):
        '''Terminate a running MapReduce job

        Stops the current running job.
        '''

        if not self.job_id:
            raise Exception('No job is running.')

        self.emr_conn.terminate_jobflow(self.job_id)
        self.job_id = None

    def get_job(self):
        '''Gets the running job details

        Returns:
            JobFlow object with relevant fields:
                state           string      the state of the job flow, either
                                            COMPLETED | FAILED | TERMINATED
                                            RUNNING | SHUTTING_DOWN | STARTING
                                            WAITING | BOOTSTRAPPING
                steps           list(Step)  a list of the step details in the
                                            workflow. A Step has the relevant
                                            fields:
                                                status              string
                                                startdatetime       string
                                                enddatetime         string

        Note: Amazon has an upper-limit on the frequency with which you can
              call this function; we have had success with calling it one
              every 10 seconds.
        '''
        
        if not self.job_id:
            raise Exception('No job is running.')

        return self.emr_conn.describe_jobflow(self.job_id)

    def add_step(self, mapper, reducer, input, output, num_map=1, 
                 num_reduce=1):
        '''Add a step to an existing job

        Adds a new step to an already running job flow.

        Note: any given job flow can support up to 256 steps. To workaround
              this limitation, you can always choose to submit a new job
              once the current job completes.
        
        Arguments:
            mapper          string      path to the mapper, relative to
                                        your data directory.
            reducer         string      path to the reducer, relative to
                                        your data directory.
            input           string      path to the input data, relative to
                                        your data directory. To specify a
                                        directory as input, ensure your path
                                        contains a trailing /.
            output          string      path to the desired output directory.
        '''

        if not self.job_id:
            raise Exception('No job is running.')

        step = self._make_step(mapper, reducer, input, output, num_map,
                               num_reduce)
        self.emr_conn.add_jobflow_steps(self.job_id, [step])
    
    def upload(self, in_dir='data'):
        '''Upload local data to S3

        Uploads the files in the specified directory to S3, where it can be
        used by Elastic MapReduce.

        Note: this method only uploads files in the root of in_dir. It does
              NOT scan through subdirectories.

        Arguments:
            in_dir          string      optional, defaults to 'data'. Uses
                                        this directory as the base directory
                                        from which to upload.
        '''
        
        bucket = self.s3_conn.get_bucket(self.s3_bucket)
        keys = bucket.list(prefix='%s/' % self.team_id)
        bucket.delete_keys(map(lambda k: k.name, keys))
        
        to_upload = [
            (os.path.join(in_dir, file_name),
             os.path.join(self.team_id, file_name))
            for file_name in os.listdir(in_dir)
            if os.path.isfile(os.path.join(in_dir, file_name))]

        for l, r in to_upload:
            key = Key(bucket)
            key.key = r
            key.set_contents_from_filename(l)

    def download(self, out_dir='data'):
        '''Download S3 data to local directory

        Downloads S3 data to the specified directory.

        Note: this method DOES download the entire directory hierarchy as
              given by S3. It will create subdirectories as needed.

        Arguments:
            out_dir         string      optional, defaults to 'data'. Downloads
                                        files to this directory.
        '''

        bucket = self.s3_conn.get_bucket(self.s3_bucket)
        keys = bucket.list(prefix='%s/' % self.team_id)
        for key in keys:
            fp = os.path.join(out_dir, '/'.join(key.name.split('/')[1:]))
            fp_dir = os.path.dirname(fp)
            if os.path.exists(fp):
                os.remove(fp)
            elif not os.path.exists(fp_dir):
                os.makedirs(fp_dir)
            key.get_contents_to_filename(fp)

    def _make_name(self):

        return '%s-%s' % (self.team_id,
                          strftime('%m-%d-%Y %H:%M:%s', localtime()))

    
    def _make_step(self, mapper, reducer, input, output, nm=1, nr=1):

        job_name = self._make_name()
        team_s3 = self._get_s3_url()

        bucket = self.s3_conn.get_bucket(self.s3_bucket)
        keys = bucket.list(prefix='%s/%s' % (self.team_id, output))
        bucket.delete_keys(map(lambda k: k.name, keys))

        return \
            StreamingStep(name=job_name,
                          step_args=
                              ['-jobconf', 'mapred.map.tasks=%d' % nm,
                               '-jobconf', 'mapred.reduce.tasks=%d' % nr],
                          mapper=team_s3 + mapper,
                          reducer=team_s3 + reducer,
                          input=team_s3 + input,
                          output=team_s3 + output)

    def _get_s3_url(self):

        return 's3n://%s/%s/' % (self.s3_bucket, self.team_id)