Exemplo n.º 1
0
    def __init__(self, file_name, base_port=5006):
        atexit.register(self.close)
        self.port = base_port
        self._buffer_size = 10240
        self._loaded = False
        self._open_socket = False
        logger.info("unity env try created, socket with port:{}".format(
            str(self.port)))

        try:
            # Establish communication socket
            self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
            self._socket.bind(("localhost", self.port))
            self._open_socket = True
        except socket.error:
            self._open_socket = True
            self.close()
            raise socket.error(
                "Couldn't launch new environment "
                "You may need to manually close a previously opened environment "
                "or use a different worker number.")

        cwd = os.getcwd()
        file_name = (file_name.strip().replace('.app', '').replace(
            '.exe', '').replace('.x86_64', '').replace('.x86', ''))
        true_filename = os.path.basename(os.path.normpath(file_name))
        launch_string = None
        if platform == "linux" or platform == "linux2":
            candidates = glob.glob(os.path.join(cwd, file_name) + '.x86_64')
            if len(candidates) == 0:
                candidates = glob.glob(os.path.join(cwd, file_name) + '.x86')
            if len(candidates) == 0:
                candidates = glob.glob(file_name + '.x86_64')
            if len(candidates) == 0:
                candidates = glob.glob(file_name + '.x86')
            if len(candidates) > 0:
                launch_string = candidates[0]

        elif platform == 'darwin':
            candidates = glob.glob(
                os.path.join(cwd, file_name + '.app', 'Contents', 'MacOS',
                             true_filename))
            if len(candidates) == 0:
                candidates = glob.glob(
                    os.path.join(file_name + '.app', 'Contents', 'MacOS',
                                 true_filename))
            if len(candidates) == 0:
                candidates = glob.glob(
                    os.path.join(cwd, file_name + '.app', 'Contents', 'MacOS',
                                 '*'))
            if len(candidates) == 0:
                candidates = glob.glob(
                    os.path.join(file_name + '.app', 'Contents', 'MacOS', '*'))
            if len(candidates) > 0:
                launch_string = candidates[0]
        elif platform == 'win32':
            candidates = glob.glob(os.path.join(cwd, file_name + '.exe'))
            if len(candidates) == 0:
                candidates = glob.glob(file_name + '.exe')
            if len(candidates) > 0:
                launch_string = candidates[0]
        if launch_string is None:
            self.close()
            raise UnityEnvironmentException(
                "Couldn't launch the {0} environment. "
                "Provided filename does not match any environments.".format(
                    true_filename))
        else:
            # Launch Unity environment
            proc1 = subprocess.Popen([launch_string, '--port', str(self.port)])

        self._socket.settimeout(60)
        try:
            try:
                self._socket.listen(1)
                self._conn, _ = self._socket.accept()
                self._conn.settimeout(30)
                p = self._conn.recv(self._buffer_size).decode('utf-8')
                p = json.loads(p)
                # print p
            except socket.timeout as e:
                raise UnityTimeOutException(
                    "The Unity environment took too long to respond. Make sure {} does not need user interaction to "
                    "launch and that the Academy and the external Brain(s) are attached to objects in the Scene."
                    .format(str(file_name)))

            self._data = {}
            self._global_done = None
            self._log_path = p["logPath"]
            self._alpha = p["alpha"]
            self._epsilon = p["epsilon"]
            self._gamma = p["gamma"]
            self._states = p["states"]
            # self._num_states = len(self._states)
            # for i in range(self._num_states):
            #     print "i:{0}, state:{1}".format(i,self._states[i])
            self._actions = p["actions"]
            self._brain = QLearningTable(self._actions, self._states,
                                         self._alpha, self._gamma,
                                         self._epsilon)
            self._loaded = True
            self._recv_bytes()
            logger.info("started successfully!")
        except UnityEnvironmentException:
            proc1.kill()
            self.close()
            raise
Exemplo n.º 2
0
                       type=float,
                       default=0.9,
                       help='Reward decay')
    args = parse.parse_args()

    # env setup
    env = gym.make('MountainCar-v0')
    env = env.unwrapped

    # algorithm setup
    method = args.method
    if method == 'QL':
        print("Use Q-Learning...")
        print('--------------------------------')
        RL = QLearningTable(actions=list(range(env.action_space.n)),
                            learning_rate=args.learning_rate,
                            reward_decay=args.reward_decay)
    elif method == 'SARSA':
        print("Use SARSA...")
        print('--------------------------------')
        RL = SarsaTable(actions=list(range(env.action_space.n)),
                        learning_rate=args.learning_rate,
                        reward_decay=args.reward_decay)
    elif method == 'DQN':
        print("Use DQN...")
        print('--------------------------------')
        env_shape = 0 if isinstance(
            env.action_space.sample(),
            int) else env.action_space.sample().shape  # to confirm the shape
        RL = DQN(action_n=env.action_space.n,
                 state_n=env.observation_space.shape[0],
Exemplo n.º 3
0
class UnityEnvironment(object):
    def __init__(self, file_name, base_port=5006):
        atexit.register(self.close)
        self.port = base_port
        self._buffer_size = 10240
        self._loaded = False
        self._open_socket = False
        logger.info("unity env try created, socket with port:{}".format(
            str(self.port)))

        try:
            # Establish communication socket
            self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
            self._socket.bind(("localhost", self.port))
            self._open_socket = True
        except socket.error:
            self._open_socket = True
            self.close()
            raise socket.error(
                "Couldn't launch new environment "
                "You may need to manually close a previously opened environment "
                "or use a different worker number.")

        cwd = os.getcwd()
        file_name = (file_name.strip().replace('.app', '').replace(
            '.exe', '').replace('.x86_64', '').replace('.x86', ''))
        true_filename = os.path.basename(os.path.normpath(file_name))
        launch_string = None
        if platform == "linux" or platform == "linux2":
            candidates = glob.glob(os.path.join(cwd, file_name) + '.x86_64')
            if len(candidates) == 0:
                candidates = glob.glob(os.path.join(cwd, file_name) + '.x86')
            if len(candidates) == 0:
                candidates = glob.glob(file_name + '.x86_64')
            if len(candidates) == 0:
                candidates = glob.glob(file_name + '.x86')
            if len(candidates) > 0:
                launch_string = candidates[0]

        elif platform == 'darwin':
            candidates = glob.glob(
                os.path.join(cwd, file_name + '.app', 'Contents', 'MacOS',
                             true_filename))
            if len(candidates) == 0:
                candidates = glob.glob(
                    os.path.join(file_name + '.app', 'Contents', 'MacOS',
                                 true_filename))
            if len(candidates) == 0:
                candidates = glob.glob(
                    os.path.join(cwd, file_name + '.app', 'Contents', 'MacOS',
                                 '*'))
            if len(candidates) == 0:
                candidates = glob.glob(
                    os.path.join(file_name + '.app', 'Contents', 'MacOS', '*'))
            if len(candidates) > 0:
                launch_string = candidates[0]
        elif platform == 'win32':
            candidates = glob.glob(os.path.join(cwd, file_name + '.exe'))
            if len(candidates) == 0:
                candidates = glob.glob(file_name + '.exe')
            if len(candidates) > 0:
                launch_string = candidates[0]
        if launch_string is None:
            self.close()
            raise UnityEnvironmentException(
                "Couldn't launch the {0} environment. "
                "Provided filename does not match any environments.".format(
                    true_filename))
        else:
            # Launch Unity environment
            proc1 = subprocess.Popen([launch_string, '--port', str(self.port)])

        self._socket.settimeout(60)
        try:
            try:
                self._socket.listen(1)
                self._conn, _ = self._socket.accept()
                self._conn.settimeout(30)
                p = self._conn.recv(self._buffer_size).decode('utf-8')
                p = json.loads(p)
                # print p
            except socket.timeout as e:
                raise UnityTimeOutException(
                    "The Unity environment took too long to respond. Make sure {} does not need user interaction to "
                    "launch and that the Academy and the external Brain(s) are attached to objects in the Scene."
                    .format(str(file_name)))

            self._data = {}
            self._global_done = None
            self._log_path = p["logPath"]
            self._alpha = p["alpha"]
            self._epsilon = p["epsilon"]
            self._gamma = p["gamma"]
            self._states = p["states"]
            # self._num_states = len(self._states)
            # for i in range(self._num_states):
            #     print "i:{0}, state:{1}".format(i,self._states[i])
            self._actions = p["actions"]
            self._brain = QLearningTable(self._actions, self._states,
                                         self._alpha, self._gamma,
                                         self._epsilon)
            self._loaded = True
            self._recv_bytes()
            logger.info("started successfully!")
        except UnityEnvironmentException:
            proc1.kill()
            self.close()
            raise

    def __str__(self):
        return "unity env args, socket port:{0}, epsilon:{1}, gamma:{2}".format(
            str(self.port), str(self._log_path), str(self._gamma))

    def _recv_bytes(self):
        try:
            s = self._conn.recv(self._buffer_size)
            message_length = struct.unpack("I", bytearray(s[:4]))[0]
            s = s[4:]
            while len(s) != message_length:
                s += self._conn.recv(self._buffer_size)
            p = json.loads(s)
            code = p["Code"]
            # logging.info("rcv: "+s+" code:"+str(code))
            if code == "EEXIT":
                self.close()
            elif code == "CHOIC":
                state = p["state"]
                self._send_choice(state)
                self._recv_bytes()
            elif code == "UPDAT":
                self._to_learn(p)
                self._recv_bytes()
            else:
                logging.error("\nunknown code:{0}".format(str(code)))
                self._recv_bytes()
        except socket.timeout as e:
            logger.warning("timeout, will close socket")
            self.close()

    def _send_choice(self, state):
        try:
            # logging.info("send action:{}".format(str(state)))
            action = self._brain.choose_action(state)
            # logger.info("action is:".format(str(action)))
            self._conn.send(action)
        except UnityEnvironmentException:
            raise

    def _to_learn(self, j):
        state_ = j["state_"]
        state = j["state"]
        action = j["action"]
        rewd = j["rewd"]
        if action:
            action = "pad"
        else:
            action = "stay"
        # logger.info("state:{0} action:{1}".format(str(state),str(action)))
        self._brain.learn(state, action, rewd, state_)

    def close(self):
        logger.info("env closed")
        if not self._brain:
            self._brain.export()
        if self._loaded & self._open_socket:
            self._conn.send(b"EXIT")
            self._conn.close()
        if self._open_socket:
            self._socket.close()
            self._loaded = False
        else:
            raise UnityEnvironmentException("No Unity environment is loaded.")
Exemplo n.º 4
0
    parser.add_argument(
        '--method',
        default='DQN',
        help=
        'input method used to solve problem: Q-learning / Sarsa / SarsaLambda / DQN / Policy Gradient'
    )
    parser.add_argument('--episode',
                        default='5000',
                        help='input how many episodes to execute')
    parser.add_argument('--test',
                        default='False',
                        help='is testing mode or not')
    args = parser.parse_args()

    if args.method == 'Q-learning':
        RL = QLearningTable(range(0, env.action_space.n))
    elif args.method == 'Sarsa':
        RL = SarsaTable(range(0, env.action_space.n))
    elif args.method == 'SarsaLambda':
        RL = SarsaLambdaTable(range(0, env.action_space.n))
    elif args.method == 'DQN':
        if args.test == 'True':
            RL = DeepQNetwork(env.action_space.n,
                              2,
                              lr=0.1,
                              batch_size=128,
                              reward_decay=0.9,
                              e_greedy=0.9,
                              replace_target_iter=300,
                              memory_size=3000,
                              e_greedy_increment=0.0001,
Exemplo n.º 5
0
            action = RL.choose_action(str(observation))
            observation_, reward, done = game.ML_move(action)
            if (reward > max):
                max = reward
            #print(str(observation) + " R" + str(reward))
            RL.learn(str(observation), action, reward, str(observation_))

            # swap observation
            observation = observation_

            # break while loop when end of this episode
            if done:
                print(max)
                break


if __name__ == "__main__":
    game = Game(288, 512)
    game.setup()
    reward = 0
    done = False
    RL = QLearningTable(actions=list(range(game.n_actions)))

    #arcade.run()
    #start_new_thread(main,())
    thread1 = myThread()
    #thread2 = myThread2()
    thread1.start()
    #thread2.start()
    arcade.run()
Exemplo n.º 6
0
    for episode in range(100):
        # initial observation
        s_curr = maze._reset_maze()

        while True:
            maze._render()

            # Get next action from the Q-table
            action = rl.select_next_action(str(s_curr))

            # take the action and observe the next state and reward
            s_next, reward, isDone = maze._update_maze(action)

            # learn from the feedback
            rl.learn(str(s_curr), action, reward, str(s_next))

            s_curr = s_next
            if isDone:
                break

    print("Game over")
    maze.destroy()


if __name__ == "__main__":
    maze = Maze()
    rl = QLearningTable(actions=list(range(len(maze.action_space))))

    maze.after(100, update)
    maze.mainloop()
Exemplo n.º 7
0
        step = 0
        RL.learning_rate = lr[episode]
        while True:
            env.render()  #env.update()
            action = RL.choose_action(str(observation))
            observation_, reward, done = env.step(action)
            sum_reward += reward
            step += 1
            RL.learn(str(observation), action, reward, str(observation_), done)
            observation = observation_
            if done:
                REWARD.append(sum_reward)
                STEP.append(step)
                break


REWARD = []
STEP = []
lr = [0.1] * 200 + [0.03] * 400 + [0.005] * 400 + [
    0.0005
] * 800  #+[0.0001]*400#+[0.00001]*400

env = Maze(n_goals=2, n_agents=2,
           origin_random=True)  #random needs more training
RL = QLearningTable(actions=list(range(env.n_actions)))
env.after(100, update(len(lr)))
env.mainloop()
joblib.dump(RL, 'table2.pkl')
plt.plot(range(1, len(REWARD) + 1), REWARD)
plt.show()