Exemplo n.º 1
0
def plot_head_signals_tight_multiple_signals(all_signals, sensor_names=None,
    figsize=(10, 8), plot_args=None):
    assert sensor_names is not None
    assert all([len(signals) == len(all_signals[0]) for signals in all_signals])
    if plot_args is None:
        plot_args = dict()
    figure = plt.figure(figsize=figsize)
    sensor_positions = [get_sensor_pos(name, tight_C_positions) for name in sensor_names]
    sensor_positions = np.array(sensor_positions)  # sensors x 2(row and col)
    maxima = np.max(sensor_positions, axis=0)
    minima = np.min(sensor_positions, axis=0)
    max_row = maxima[0, 0]
    max_col = maxima[1, 0]
    min_row = minima[0, 0]
    min_col = minima[1, 0]
    rows = max_row - min_row + 1
    cols = max_col - min_col + 1
    first_ax = None
    
    # gridspec inside gridspec
    outer_grid = gridspec.GridSpec(rows, cols, wspace=0.3, hspace=0.5)
    
    for i in xrange(0, len(all_signals[0])):
        sensor_name = sensor_names[i]
        sensor_pos = sensor_positions[i]
        assert np.all(sensor_pos == get_sensor_pos(sensor_name, tight_C_positions))
        row = sensor_pos[0]
        col = sensor_pos[1]
        inner_grid = gridspec.GridSpecFromSubplotSpec(len(all_signals), 1,
                subplot_spec=outer_grid[row - min_row, col - min_col], wspace=0.0, hspace=0.0)
        for signal_type in xrange(len(all_signals)):
            signal = all_signals[signal_type][i]
            if first_ax is None:
                ax = plt.Subplot(figure, inner_grid[signal_type, 0])
                first_ax = ax
            else:
                ax = plt.Subplot(figure, inner_grid[signal_type, 0], sharey=first_ax, sharex=first_ax)
            
            if signal_type == 0:
                ax.set_title(sensor_name, fontsize=10)
    
            ax.plot(signal, **plot_args)
            ax.xaxis.grid(True)
            # make line at zero
            ax.axhline(y=0, ls=':', color="grey")
            figure.add_subplot(ax)
        
        
    if len(signal) == 600:
        plt.xticks([150, 300, 450], [])
    else:
        plt.xticks([])
    
    plt.yticks([])
    return figure
Exemplo n.º 2
0
def plot_head_signals(signals,
                      sensor_names=None,
                      figsize=(12, 7),
                      plot_args=None):
    assert sensor_names is None or len(signals) == len(sensor_names), (
        "need "
        "sensor names for all sensor matrices")
    if sensor_names is None:
        sensor_names = map(str, range(len(signals)))
    if plot_args is None:
        plot_args = dict()
    figure = plt.figure(figsize=figsize)
    sensor_positions = [get_sensor_pos(name) for name in sensor_names]
    sensor_positions = np.array(sensor_positions)  # sensors x 2(row and col)
    maxima = np.max(sensor_positions, axis=0)
    minima = np.min(sensor_positions, axis=0)
    max_row = maxima[0]
    max_col = maxima[1]
    min_row = minima[0]
    min_col = minima[1]
    rows = max_row - min_row + 1
    cols = max_col - min_col + 1
    first_ax = None
    for i in xrange(0, len(signals)):
        sensor_name = sensor_names[i]
        sensor_pos = sensor_positions[i]
        assert np.all(sensor_pos == get_sensor_pos(sensor_name))
        # Transform to flat sensor pos
        row = sensor_pos[0]
        col = sensor_pos[1]
        subplot_ind = (
            row - min_row
        ) * cols + col - min_col + 1  # +1 as matlab uses based indexing
        if first_ax is None:
            ax = figure.add_subplot(rows, cols, subplot_ind)
            first_ax = ax
        else:
            ax = figure.add_subplot(rows,
                                    cols,
                                    subplot_ind,
                                    sharey=first_ax,
                                    sharex=first_ax)
        signal = signals[i]
        ax.plot(signal, **plot_args)
        ax.set_title(sensor_name)
        ax.set_yticks([])
        if len(signal) == 600:
            ax.set_xticks([150, 300, 450])
            ax.set_xticklabels([])
        ax.xaxis.grid(True)
        # make line at zero
        ax.axhline(y=0, ls=':', color="grey")
    return figure
Exemplo n.º 3
0
def plot_head_signals(signals, sensor_names=None, figsize=(12, 7),
    plot_args=None):
    assert sensor_names is None or len(signals) == len(sensor_names), ("need "
        "sensor names for all sensor matrices")
    if sensor_names is None:
        sensor_names = map(str, range(len(signals)))
    if plot_args is None:
        plot_args = dict()
    figure = plt.figure(figsize=figsize)
    sensor_positions = [get_sensor_pos(name) for name in sensor_names]
    sensor_positions = np.array(sensor_positions)  # sensors x 2(row and col)
    maxima = np.max(sensor_positions, axis=0)
    minima = np.min(sensor_positions, axis=0)
    max_row = maxima[0]
    max_col = maxima[1]
    min_row = minima[0]
    min_col = minima[1]
    rows = max_row - min_row + 1
    cols = max_col - min_col + 1
    first_ax = None
    for i in xrange(0, len(signals)):
        sensor_name = sensor_names[i]
        sensor_pos = sensor_positions[i]
        assert np.all(sensor_pos == get_sensor_pos(sensor_name))
        # Transform to flat sensor pos
        row = sensor_pos[0]
        col = sensor_pos[1]
        subplot_ind = (row - min_row) * cols + col - min_col + 1  # +1 as matlab uses based indexing
        if first_ax is None:
            ax = figure.add_subplot(rows, cols, subplot_ind)
            first_ax = ax
        else:
            ax = figure.add_subplot(rows, cols, subplot_ind, sharey=first_ax,
                sharex=first_ax)
        signal = signals[i]
        ax.plot(signal, **plot_args)
        ax.set_title(sensor_name)
        ax.set_yticks([])
        if len(signal) == 600:
            ax.set_xticks([150, 300, 450])
            ax.set_xticklabels([])
        ax.xaxis.grid(True)
        # make line at zero
        ax.axhline(y=0, ls=':', color="grey")
    return figure
Exemplo n.º 4
0
def plot_chan_matrices(matrices, sensor_names, figname='', figure=None,
    figsize=(8, 4.5), yticks=(), yticklabels=(),
    correctness_matrices=None, colormap=cm.coolwarm,
    sensor_map=cap_positions, vmax=None, vmin=None,
    share_y_axes=True):
    """ figsize ignored if figure given """
    assert len(matrices) == len(sensor_names), "need sensor names for all sensor matrices"
    if figure is None:
        figure = plt.figure(figsize=figsize)
    sensor_positions = [get_sensor_pos(name, sensor_map) for name in sensor_names]
    sensor_positions = np.array(sensor_positions)  # #sensors x 2(row and col) x1(for some reason:)) 
    maxima = np.max(sensor_positions, axis=0)
    minima = np.min(sensor_positions, axis=0)
    max_row = maxima[0]
    max_col = maxima[1]
    min_row = minima[0]
    min_col = minima[1]
    rows = max_row - min_row + 1
    cols = max_col - min_col + 1
    mean_abs_weight = np.mean(np.abs(matrices))
    if (correctness_matrices is not None):
        mean_abs_weight = np.mean(np.abs(matrices * correctness_matrices))
    if figname != '':
        figure.suptitle(figname, fontsize=14)  # + ", pixel abs mean(x100):  {:.3f}".format(mean_abs_weight * 100),
    
    first_ax = None
    for i in xrange(0, len(matrices)):
        sensor_name = sensor_names[i]
        sensor_pos = sensor_positions[i]
        assert np.all(sensor_pos == get_sensor_pos(sensor_name, sensor_map))
        # Transform to flat sensor pos
        row = sensor_pos[0]
        col = sensor_pos[1]
        subplot_ind = (row - min_row) * cols + col - min_col + 1  # +1 as matlab uses based indexing
        
        if vmin is None:
            vmin = -2 * mean_abs_weight
        if vmax is None:
            vmax = 2 * mean_abs_weight
        if first_ax is None or not share_y_axes:
            ax = figure.add_subplot(rows, cols, subplot_ind)
            first_ax = ax
        elif share_y_axes:
            ax = figure.add_subplot(rows, cols, subplot_ind, sharey=first_ax)
            
        chan_matrix = matrices[i]
        ax.set_title(sensor_name)
        if (correctness_matrices is None):
            # ax.pcolor(chan_matrix.T,
            #     cmap=cm.bwr, #origin='lower', #interpolation='nearest',#aspect='auto'
            #    vmin=-mean_abs_weight * 2, vmax= mean_abs_weight * 2)
            ax.pcolorfast(chan_matrix.T,
                 cmap=colormap,  # origin='lower', #interpolation='nearest',#aspect='auto'
                vmin=vmin, vmax=vmax)
            # ax.imshow(chan_matrix.T,
            #    interpolation='nearest', cmap=cm.bwr, origin='lower', 
            #    vmin=-mean_abs_weight * 2, vmax= mean_abs_weight * 2,
            #    aspect='auto')#"""
        else:
            # Show correct and incorrect inputs with different colors
            # weighted also by degree of correctness
            correctness_mat = correctness_matrices[i]
            ax.imshow(
                np.ma.masked_where(correctness_mat < 0, chan_matrix * correctness_mat).T,
                interpolation='nearest', cmap=cm.bwr, origin='lower',
                vmin=vmin, vmax=vmax)
            # use yellow/brown for red(positive) incorrect values
            # (mask out correct or blue=negative values)
            # also take minus the values as otherwise they go from
            # minus-something to 0, that makes colormaps 
            # more complicated to use :) 
            ax.imshow(
                np.ma.masked_where(
                    np.logical_or(correctness_mat > 0, chan_matrix < 0),
                    - (chan_matrix * correctness_mat)).T,
                interpolation='nearest', cmap=cm.YlOrBr, origin='lower',
                vmin=0, vmax=vmax)
            # use purple for blue(negative) incorrect values
            ax.imshow(
                np.ma.masked_where(
                    np.logical_or(correctness_mat > 0, chan_matrix >= 0),
                    chan_matrix * correctness_mat).T,
                interpolation='nearest', cmap=cm.PuRd, origin='lower',
                vmin=0, vmax=vmax)
        ax.set_xticks([])
        ax.set_yticks(yticks)
        ax.set_yticklabels(yticklabels)
        ax.tick_params(axis='both', which='major', labelsize=6)
        ax.grid(color='k', linewidth=0.1, linestyle=':')
    return figure
Exemplo n.º 5
0
def plot_chan_matrices(matrices,
                       sensor_names,
                       figname='',
                       figure=None,
                       figsize=(8, 4.5),
                       yticks=(),
                       yticklabels=(),
                       correctness_matrices=None,
                       colormap=cm.coolwarm,
                       sensor_map=cap_positions,
                       vmax=None,
                       vmin=None,
                       share_y_axes=True):
    """ Chan matrices in [chan x row x col] order.
    figsize ignored if figure given """
    assert len(matrices) == len(
        sensor_names), "need sensor names for all sensor matrices"
    if figure is None:
        figure = plt.figure(figsize=figsize)
    sensor_positions = [
        get_sensor_pos(name, sensor_map) for name in sensor_names
    ]
    sensor_positions = np.array(
        sensor_positions)  # #sensors x 2(row and col) x1(for some reason:))
    maxima = np.max(sensor_positions, axis=0)
    minima = np.min(sensor_positions, axis=0)
    max_row = maxima[0]
    max_col = maxima[1]
    min_row = minima[0]
    min_col = minima[1]
    rows = max_row - min_row + 1
    cols = max_col - min_col + 1
    mean_abs_weight = np.mean(np.abs(matrices))
    if (correctness_matrices is not None):
        mean_abs_weight = np.mean(np.abs(matrices * correctness_matrices))
    if figname != '':
        figure.suptitle(
            figname, fontsize=14
        )  # + ", pixel abs mean(x100):  {:.3f}".format(mean_abs_weight * 100),

    first_ax = None
    for i in xrange(0, len(matrices)):
        sensor_name = sensor_names[i]
        sensor_pos = sensor_positions[i]
        assert np.all(sensor_pos == get_sensor_pos(sensor_name, sensor_map))
        # Transform to flat sensor pos
        row = sensor_pos[0]
        col = sensor_pos[1]
        subplot_ind = (
            row - min_row
        ) * cols + col - min_col + 1  # +1 as matlab uses based indexing

        if vmin is None:
            vmin = -2 * mean_abs_weight
        if vmax is None:
            vmax = 2 * mean_abs_weight
        if first_ax is None or not share_y_axes:
            ax = figure.add_subplot(rows, cols, subplot_ind)
            first_ax = ax
        elif share_y_axes:
            ax = figure.add_subplot(rows, cols, subplot_ind, sharey=first_ax)

        chan_matrix = matrices[i]
        ax.set_title(sensor_name)
        if (correctness_matrices is None):
            # ax.pcolor(chan_matrix.T,
            #     cmap=cm.bwr, #origin='lower', #interpolation='nearest',#aspect='auto'
            #    vmin=-mean_abs_weight * 2, vmax= mean_abs_weight * 2)
            ax.pcolorfast(
                chan_matrix.T,
                cmap=
                colormap,  # origin='lower', #interpolation='nearest',#aspect='auto'
                vmin=vmin,
                vmax=vmax)
            # ax.imshow(chan_matrix.T,
            #    interpolation='nearest', cmap=cm.bwr, origin='lower',
            #    vmin=-mean_abs_weight * 2, vmax= mean_abs_weight * 2,
            #    aspect='auto')#"""
        else:
            # Show correct and incorrect inputs with different colors
            # weighted also by degree of correctness
            correctness_mat = correctness_matrices[i]
            ax.imshow(np.ma.masked_where(correctness_mat < 0,
                                         chan_matrix * correctness_mat).T,
                      interpolation='nearest',
                      cmap=cm.bwr,
                      origin='lower',
                      vmin=vmin,
                      vmax=vmax)
            # use yellow/brown for red(positive) incorrect values
            # (mask out correct or blue=negative values)
            # also take minus the values as otherwise they go from
            # minus-something to 0, that makes colormaps
            # more complicated to use :)
            ax.imshow(np.ma.masked_where(
                np.logical_or(correctness_mat > 0, chan_matrix < 0),
                -(chan_matrix * correctness_mat)).T,
                      interpolation='nearest',
                      cmap=cm.YlOrBr,
                      origin='lower',
                      vmin=0,
                      vmax=vmax)
            # use purple for blue(negative) incorrect values
            ax.imshow(np.ma.masked_where(
                np.logical_or(correctness_mat > 0, chan_matrix >= 0),
                chan_matrix * correctness_mat).T,
                      interpolation='nearest',
                      cmap=cm.PuRd,
                      origin='lower',
                      vmin=0,
                      vmax=vmax)
        ax.set_xticks([])
        ax.set_yticks(yticks)
        ax.set_yticklabels(yticklabels)
        ax.tick_params(axis='both', which='major', labelsize=6)
        ax.grid(color='k', linewidth=0.1, linestyle=':')
    return figure
Exemplo n.º 6
0
def plot_head_signals_tight_multiple_signals(all_signals,
                                             sensor_names=None,
                                             figsize=(10, 8),
                                             plot_args=None):
    assert sensor_names is not None
    assert all(
        [len(signals) == len(all_signals[0]) for signals in all_signals])
    if plot_args is None:
        plot_args = dict()
    figure = plt.figure(figsize=figsize)
    sensor_positions = [
        get_sensor_pos(name, tight_C_positions) for name in sensor_names
    ]
    sensor_positions = np.array(sensor_positions)  # sensors x 2(row and col)
    maxima = np.max(sensor_positions, axis=0)
    minima = np.min(sensor_positions, axis=0)
    max_row = maxima[0, 0]
    max_col = maxima[1, 0]
    min_row = minima[0, 0]
    min_col = minima[1, 0]
    rows = max_row - min_row + 1
    cols = max_col - min_col + 1
    first_ax = None

    # gridspec inside gridspec
    outer_grid = gridspec.GridSpec(rows, cols, wspace=0.3, hspace=0.5)

    for i in xrange(0, len(all_signals[0])):
        sensor_name = sensor_names[i]
        sensor_pos = sensor_positions[i]
        assert np.all(
            sensor_pos == get_sensor_pos(sensor_name, tight_C_positions))
        row = sensor_pos[0]
        col = sensor_pos[1]
        inner_grid = gridspec.GridSpecFromSubplotSpec(
            len(all_signals),
            1,
            subplot_spec=outer_grid[row - min_row, col - min_col],
            wspace=0.0,
            hspace=0.0)
        for signal_type in xrange(len(all_signals)):
            signal = all_signals[signal_type][i]
            if first_ax is None:
                ax = plt.Subplot(figure, inner_grid[signal_type, 0])
                first_ax = ax
            else:
                ax = plt.Subplot(figure,
                                 inner_grid[signal_type, 0],
                                 sharey=first_ax,
                                 sharex=first_ax)

            if signal_type == 0:
                ax.set_title(sensor_name, fontsize=10)

            ax.plot(signal, **plot_args)
            ax.xaxis.grid(True)
            # make line at zero
            ax.axhline(y=0, ls=':', color="grey")
            figure.add_subplot(ax)

    if len(signal) == 600:
        plt.xticks([150, 300, 450], [])
    else:
        plt.xticks([])

    plt.yticks([])
    return figure