Exemplo n.º 1
0
    def __init__(self, source, target = None, model = None, pre = None, post = None,
             max_delay = 0*ms,
             level = 0,
             clock = None,code_namespace=None,
             unit_checking = True, method = None, freeze = False, implicit = False, order = 1): # model (state updater) related
        
        target=target or source # default is target=source

        # Check clocks. For the moment we enforce the same clocks for all objects
        clock = clock or source.clock
        if source.clock!=target.clock:
            raise ValueError,"Source and target groups must have the same clock"

        if pre is None:
            pre_list=[]
        elif isSequenceType(pre) and not isinstance(pre,str): # a list of pre codes
            pre_list=pre
        else:
            pre_list=[pre]

        pre_list=[flattened_docstring(pre) for pre in pre_list]
        if post is not None:
            post=flattened_docstring(post)

        # Pre and postsynaptic indexes (synapse -> pre/post)
        self.presynaptic=DynamicArray1D(0,dtype=smallest_inttype(len(source))) # this should depend on number of neurons
        self.postsynaptic=DynamicArray1D(0,dtype=smallest_inttype(len(target))) # this should depend on number of neurons

        if not isinstance(model,SynapticEquations):
            model=SynapticEquations(model,level=level+1)
        # Insert the lastupdate variable if necessary (if it is mentioned in pre/post, or if there is event-driven code)
        expr=re.compile(r'\blastupdate\b')
        if (len(model._eventdriven)>0) or \
           any([expr.search(pre) for pre in pre_list]) or \
           (post is not None and expr.search(post) is not None):
            model+='\nlastupdate : second\n'
            pre_list=[pre+'\nlastupdate=t\n' for pre in pre_list]
            if post is not None:
                post=post+'\nlastupdate=t\n'
        
        # Identify pre and post variables in the model string
        # They are identified by _pre and _post suffixes
        # or no suffix for postsynaptic variables
        ids=set()
        for RHS in model._string.itervalues():
            ids.update(get_identifiers(RHS))
        pre_ids = [id[:-4] for id in ids if id[-4:]=='_pre']
        post_ids = [id[:-5] for id in ids if id[-5:]=='_post']
        post_vars = [var for var in source.var_index if isinstance(var,str)] # postsynaptic variables
        post_ids2 = list(ids.intersection(set(post_vars))) # post variables without the _post suffix

        # remember whether our equations refer to any variables in the pre- or
        # postsynaptic group. This is important for the state-updater, e.g. the
        # equations can no longer be solved as linear equations.
        model.refers_others = (len(pre_ids) + len(post_ids) + len(post_ids2) > 0)

        # Insert static equations for pre and post variables
        S=self
        for name in pre_ids:
            model.add_eq(name+'_pre', 'S.source.'+name+'[S.presynaptic[:]]', source.unit(name),
                         global_namespace={'S':S})
        for name in post_ids:
            model.add_eq(name+'_post', 'S.target.'+name+'[S.postsynaptic[:]]', target.unit(name),
                         global_namespace={'S':S})
        for name in post_ids2: # we have to change the name of the variable to avoid problems with equation processing
            if name not in model._string: # check that it is not already defined
                model.add_eq(name, 'S.target.state_(__'+name+')[S.postsynaptic[:]]', target.unit(name),
                             global_namespace={'S':S,'__'+name:name})

        self.source=source
        self.target=target
        
        NeuronGroup.__init__(self, 0,model=model,clock=clock,level=level+1,unit_checking=unit_checking,method=method,freeze=freeze,implicit=implicit,order=order)
        '''
        At this point we have:
        * a state matrix _S with all variables
        * units, state dictionary with each value being a row of _S + the static equations
        * subgroups of synapses
        * link_var (i.e. we can link two synapses objects)
        * __len__
        * __setattr__: we can write S.w=array of values
        * var_index is a dictionary from names to row index in _S
        * num_states()
        
        Things we have that we don't want:
        * LS structure (but it will not be filled since the object does not spike)
        * (from Group) __getattr_ needs to be rewritten
        * a complete state updater, but we need to extract parameters and event-driven parts
        * The state matrix is not dynamic
        
        Things we may need to add:
        * _pre and _post suffixes
        '''       
        self._iscompressed=False # True if compress() has already been called
        
        # Look for event-driven code in the differential equations
        if use_sympy:
            eqs=self._eqs # an Equations object
            #vars=eqs._diffeq_names_nonzero # Dynamic variables
            vars=eqs._eventdriven.keys()
            var_set=set(vars)
            for var,RHS in eqs._eventdriven.iteritems():
                ids=get_identifiers(RHS)
                if len(set(list(ids)+[var]).intersection(var_set))==1:
                    # no external dynamic variable
                    # Now we test if it is a linear equation
                    _namespace=dict.fromkeys(ids,1.) # there is a possibility of problems here (division by zero)
                    # plus units problems? (maybe not since these are identifiers too)
                    # another option is to use random numbers, but that doesn't solve all problems
                    _namespace[var]=AffineFunction()
                    try:
                        eval(RHS,eqs._namespace[var],_namespace)
                    except: # not linear
                        raise TypeError,"Cannot turn equation for "+var+" into event-driven code"
                    z=symbolic_eval(RHS)
                    symbol_var=sympy.Symbol(var)
                    symbol_t=sympy.Symbol('t')-sympy.Symbol('lastupdate')
                    b=z.subs(symbol_var,0)
                    a=sympy.simplify(z.subs(symbol_var,1)-b)
                    if a==0:
                        expr=symbol_var+b*symbol_t
                    else:
                        expr=-b/a+sympy.exp(a*symbol_t)*(symbol_var+b/a)
                    expr=var+'='+str(expr)
                    # Replace pre and post code
                    # N.B.: the differential equations are kept, we will probably want to remove them!
                    pre_list=[expr+'\n'+pre for pre in pre_list]
                    if post is not None:
                        post=expr+'\n'+post
                else:
                    raise TypeError,"Cannot turn equation for "+var+" into event-driven code"
        elif len(self._eqs._eventdriven)>0:
            raise TypeError,"The Sympy package must be installed to produce event-driven code"

        if len(self._eqs._diffeq_names_nonzero)==0:
            self._state_updater=None
        
        # Set last spike to -infinity
        if 'lastupdate' in self.var_index:
            self.lastupdate=-1e6
        # _S is turned to a dynamic array - OK this is probably not good! we may lose references at this point
        S=self._S
        self._S=DynamicArray(S.shape)
        self._S[:]=S

        # Pre and postsynaptic delays (synapse -> delay_pre/delay_post)
        self._delay_pre=[DynamicArray1D(len(self),dtype=np.int16) for _ in pre_list] # max 32767 delays
        self._delay_post=DynamicArray1D(len(self),dtype=np.int16) # Actually only useful if there is a post code!
        
        # Pre and postsynaptic synapses (i->synapse indexes)
        max_synapses=2147483647 # it could be explicitly reduced by a keyword
        # We use a loop instead of *, otherwise only 1 dynamic array is created
        self.synapses_pre=[DynamicArray1D(0,dtype=smallest_inttype(max_synapses)) for _ in range(len(self.source))]
        self.synapses_post=[DynamicArray1D(0,dtype=smallest_inttype(max_synapses)) for _ in range(len(self.target))]

        # Code generation
        self._binomial = lambda n,p:np.random.binomial(np.array(n,dtype=int),p)

        self.contained_objects = []
        self.codes=[]
        self.namespaces=[]
        self.queues=[]
        for i,pre in enumerate(pre_list):
            code,_namespace=self.generate_code(pre,level+1,code_namespace=code_namespace)
            self.codes.append(code)
            self.namespaces.append(_namespace)
            self.queues.append(SpikeQueue(self.source, self.synapses_pre, self._delay_pre[i], max_delay = max_delay))
        
        if post is not None:
            code,_namespace=self.generate_code(post,level+1,direct=True,code_namespace=code_namespace)
            self.codes.append(code)
            self.namespaces.append(_namespace)
            self.queues.append(SpikeQueue(self.target, self.synapses_post, self._delay_post, max_delay = max_delay))

        self.queues_namespaces_codes = zip(self.queues,
                                           self.namespaces,
                                           self.codes)

        self.contained_objects+=self.queues
Exemplo n.º 2
0
 def __init__(self, expr):
     self.expr = expr
     self.sympy_expr = symbolic_eval(self.expr)
     self.dependencies = set(Read(x) for x in get_identifiers(expr))
     self.resolved = set()
Exemplo n.º 3
0
 def __init__(self, expr):
     self.expr = expr
     self.sympy_expr = symbolic_eval(self.expr)
Exemplo n.º 4
0
 def __init__(self, expr):
     self.expr = expr
     self.sympy_expr = symbolic_eval(self.expr)
     self.dependencies = set(Read(x) for x in get_identifiers(expr))
     self.resolved = set()
Exemplo n.º 5
0
 def __init__(self, expr):
     self.expr = expr
     self.sympy_expr = symbolic_eval(self.expr)