Exemplo n.º 1
0
def test_super():
    ring = element.Q

    U = Space(ring, 2, grade=0)  # bosonic
    V = Space(ring, 2, grade=1)  # fermionic

    lhs = (U @ U @ U).get_swap([0, 2, 1]).A
    rhs = (U @ U @ V).get_swap([0, 2, 1]).A
    assert eq(lhs, rhs)

    lhs = (U @ V @ V).get_swap([0, 2, 1]).A
    rhs = (U @ U @ U).get_swap([0, 2, 1]).A
    assert eq(lhs, -rhs)

    lhs = (V @ V @ V).get_swap([1, 2, 0]).A
    rhs = (U @ U @ U).get_swap([1, 2, 0]).A
    assert eq(lhs, rhs)

    n = argv.get("n", 4)
    part = argv.get("part", (2, ))

    for a in range(n):
        for b in range(n):
            U = Space(ring, a, grade=0, name="U")  # bosonic
            V = Space(ring, b, grade=1, name="V")  # fermionic
            evn, odd = super_young(U, V, part)
            print((evn, odd), end=" ", flush=True)
        print()
Exemplo n.º 2
0
 def __ne__(self, other):
     assert self.hom == other.hom
     return not eq(self.A, other.A)
Exemplo n.º 3
0
 def __eq__(self, other):
     assert self.hom == other.hom, "%s != %s" % (self.hom, other.hom)
     return eq(self.A, other.A)
Exemplo n.º 4
0
 def weak_eq(self, other):
     assert self.A.shape == other.A.shape
     return eq(self.A, other.A)
Exemplo n.º 5
0
 def is_identity(self):
     assert self.tgt == self.src, "wah?"
     B = self.tgt.identity()
     return eq(self.A, B.A)
Exemplo n.º 6
0
 def is_zero(self):
     B = Lin.zero(self.tgt, self.src)
     return eq(self.A, B.A)
Exemplo n.º 7
0
def test():

    p = argv.get("p", 2)
    ring = element.FiniteField(p)
    space = Space(ring)
    zeros = space.zeros
    rand = space.rand
    dot = space.dot
    kron = space.kron
    direct_sum = space.direct_sum
    identity = space.identity
    coequalizer = space.coequalizer
    compose = space.compose
    rank = space.rank
    pseudo_inverse = space.pseudo_inverse
    tensor_swap = space.tensor_swap
    sum_swap = space.sum_swap
    schur = space.schur
    is_zero = space.is_zero
    is_identity = space.is_identity

    s = tensor_swap(3, 4)
    si = tensor_swap(4, 3)
    #print(shortstr(s))
    assert eq(dot(si, s), identity(3 * 4))
    assert eq(dot(s, si), identity(4 * 3))

    m, n = 2, 3
    A1 = rand(m, n, 1, 1)
    A2 = rand(m, n, 1, 1)

    B = kron(A1, A2)

    for m in range(1, 5):
        I = identity(m * m)
        s = tensor_swap(m, m)
        f = coequalizer(I, s)

        assert eq(compose(s, f), f)
        assert rank(f) == [1, 3, 6, 10][m - 1]

    # ---------------------------------

    m = argv.get("m", 3)
    n = argv.get("n", 4)

    if argv.toric:
        A = zeros(m, m)
        for i in range(m):
            A[i, i] = ring.one
            A[i, (i + 1) % m] = -ring.one
    elif argv.surface:
        A = zeros(m - 1, m)
        for i in range(m - 1):
            A[i, i] = ring.one
            A[i, (i + 1) % m] = -ring.one
    else:
        A = rand(m, n, p - 1, p - 1)
    if argv.transpose:
        A = A.transpose()

    print("A:")
    print(shortstr(A))

    n, m = A.shape

    In = identity(n)
    Im = identity(m)

    H1s = kron(Im, A), -kron(A, Im)
    H1 = numpy.concatenate(H1s, axis=0)  # horizontal concatenate

    H0s = kron(A, In), kron(In, A)
    H0 = numpy.concatenate(H0s, axis=1)  # horizontal concatenate

    assert is_zero(dot(H0, H1))

    assert H1.shape == (n * m + m * n, m * m)
    assert H0.shape == (n * n, n * m + m * n)

    f0 = -tensor_swap(n, n)
    a = direct_sum(-tensor_swap(m, n), -tensor_swap(n, m))
    b = sum_swap(n * m, m * n)
    assert is_identity(compose(b, b))
    f1 = compose(a, b)
    assert is_identity(compose(f1, f1))
    f2 = tensor_swap(m, m)

    assert eq(compose(f2, H1), compose(H1, f1))
    lhs, rhs = ((compose(f1, H0), compose(H0, f0)))
    #print("lhs:")
    #print(shortstr(lhs))
    #print("rhs:")
    #print(shortstr(rhs))
    assert eq(compose(f1, H0), compose(H0, f0))

    g0 = coequalizer(f0, identity(f0.shape[0]))

    assert eq(compose(H0, g0), compose(f1, H0, g0))

    e = compose(H0, g0)
    g1, J0 = coequalizer(f1, identity(f1.shape[0]), e)

    assert eq(compose(H0, g0), compose(g1, J0))

    e = compose(H1, g1)
    g2, J1 = coequalizer(f2, identity(f2.shape[0]), e)

    assert eq(compose(H1, g1), compose(g2, J1))

    assert is_zero(compose(J1, J0))

    n = J1.shape[0]
    J1t = J1.transpose()
    mz = rank(J1t)
    mx = rank(J0)
    print("J1t:", J1t.shape, rank(J1t))
    print(shortstr(J1t))
    print("J0:", J0.shape)
    print(shortstr(J0))

    print("n:", n)
    print("mz:", mz)
    print("mx:", mx)
    print("k =", n - mx - mz)
Exemplo n.º 8
0
 def is_identity(self, A):
     return eq(A, self.identity(A.shape[0]))
Exemplo n.º 9
0
 def is_zero(self, A):
     return eq(A, self.zeros(*A.shape))